The golden age of colorimetry in diagnostics and drug analysis: Focus on the rising star of metabolite-based assays

IF 11.8 1区 化学 Q1 CHEMISTRY, ANALYTICAL Trends in Analytical Chemistry Pub Date : 2024-09-03 DOI:10.1016/j.trac.2024.117947
Pasquale Palladino , Mariagrazia Lettieri , Simona Scarano , Maria Minunni
{"title":"The golden age of colorimetry in diagnostics and drug analysis: Focus on the rising star of metabolite-based assays","authors":"Pasquale Palladino ,&nbsp;Mariagrazia Lettieri ,&nbsp;Simona Scarano ,&nbsp;Maria Minunni","doi":"10.1016/j.trac.2024.117947","DOIUrl":null,"url":null,"abstract":"<div><p>Optical spectroscopy has gained increasing significance over time, offering an impressive revival of this analytical approach for qualitative and quantitative applications. This resurgence spans from homemade test kits to official high-throughput methods employing automatic analyzers in pharmacopoeias and forensic science. This primary methodology is once again poised to provide suitable solutions to contemporary analytical problems through the new possibilities offered by the digital revolution and biocompatible materials, fostering the development of self-standing biosensing and wearable analytical devices. This review begins with the principles of optical-based analysis, rooted in the classical correlation among analyte structural features, well-established chemical reactions, and optical properties. It concludes with applicative examples of assays built under the emerging field of metabolite-based assays, incorporating natural derivatizing molecules and metabolite-derived nanomaterials. Data suggest that a comprehensive exploration of the colorimetric research field, integrated with next-generation technologies, could lead to significant improvements in pharmaceutical analysis and molecular clinical diagnosis.</p></div>","PeriodicalId":439,"journal":{"name":"Trends in Analytical Chemistry","volume":"180 ","pages":"Article 117947"},"PeriodicalIF":11.8000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Analytical Chemistry","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165993624004308","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Optical spectroscopy has gained increasing significance over time, offering an impressive revival of this analytical approach for qualitative and quantitative applications. This resurgence spans from homemade test kits to official high-throughput methods employing automatic analyzers in pharmacopoeias and forensic science. This primary methodology is once again poised to provide suitable solutions to contemporary analytical problems through the new possibilities offered by the digital revolution and biocompatible materials, fostering the development of self-standing biosensing and wearable analytical devices. This review begins with the principles of optical-based analysis, rooted in the classical correlation among analyte structural features, well-established chemical reactions, and optical properties. It concludes with applicative examples of assays built under the emerging field of metabolite-based assays, incorporating natural derivatizing molecules and metabolite-derived nanomaterials. Data suggest that a comprehensive exploration of the colorimetric research field, integrated with next-generation technologies, could lead to significant improvements in pharmaceutical analysis and molecular clinical diagnosis.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
诊断和药物分析领域的比色法黄金时代:聚焦基于代谢物检测的后起之秀
随着时间的推移,光学光谱学的重要性与日俱增,这种定性和定量分析方法的复兴令人印象深刻。从自制的检测试剂盒到药典和法医学中使用自动分析仪的官方高通量方法,都是这种方法的复兴。通过数字革命和生物兼容材料提供的新可能性,这一主要方法再次为当代分析问题提供了合适的解决方案,促进了自立式生物传感和可穿戴分析设备的发展。本综述从基于光学的分析原理入手,根植于分析物结构特征、成熟的化学反应和光学特性之间的经典关联。最后以基于代谢物的检测这一新兴领域的应用实例作为总结,其中包括天然衍生分子和代谢物衍生纳米材料。数据表明,结合下一代技术对比色法研究领域进行全面探索,可显著改善药物分析和分子临床诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Trends in Analytical Chemistry
Trends in Analytical Chemistry 化学-分析化学
CiteScore
20.00
自引率
4.60%
发文量
257
审稿时长
3.4 months
期刊介绍: TrAC publishes succinct and critical overviews of recent advancements in analytical chemistry, designed to assist analytical chemists and other users of analytical techniques. These reviews offer excellent, up-to-date, and timely coverage of various topics within analytical chemistry. Encompassing areas such as analytical instrumentation, biomedical analysis, biomolecular analysis, biosensors, chemical analysis, chemometrics, clinical chemistry, drug discovery, environmental analysis and monitoring, food analysis, forensic science, laboratory automation, materials science, metabolomics, pesticide-residue analysis, pharmaceutical analysis, proteomics, surface science, and water analysis and monitoring, these critical reviews provide comprehensive insights for practitioners in the field.
期刊最新文献
Determination and assessment of contamination of toxic chemical elements in soils – Review Recent advances in X-ray grating-based dark-field imaging Integrated breath analysis technologies: Current advances and future prospects Advancements in CRISPR-diagnostic techniques for rapid on-site monitoring of environmental virus Evaluating excitation-emission matrix for characterization of dissolved organic matter in natural and engineered water systems: Unlocking submerged secrets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1