Metabolic rewiring during bone development underlies tRNA m7G-associated primordial dwarfism.

Qiwen Li,Shuang Jiang,Kexin Lei,Hui Han,Yaqian Chen,Weimin Lin,Qiuchan Xiong,Xingying Qi,Xinyan Gan,Rui Sheng,Yuan Wang,Yarong Zhang,Jieyi Ma,Tao Li,Shuibin Lin,Chenchen Zhou,Demeng Chen,Quan Yuan
{"title":"Metabolic rewiring during bone development underlies tRNA m7G-associated primordial dwarfism.","authors":"Qiwen Li,Shuang Jiang,Kexin Lei,Hui Han,Yaqian Chen,Weimin Lin,Qiuchan Xiong,Xingying Qi,Xinyan Gan,Rui Sheng,Yuan Wang,Yarong Zhang,Jieyi Ma,Tao Li,Shuibin Lin,Chenchen Zhou,Demeng Chen,Quan Yuan","doi":"10.1172/jci177220","DOIUrl":null,"url":null,"abstract":"Translation of mRNA to protein is tightly regulated by tRNAs, which are subject to various chemical modifications that maintain the structure, stability and function. Deficiency of tRNA N7-methylguanosine (m7G) modification in patients causes a type of primordial dwarfism, but the underlying mechanism remains unknown. Here we report the loss of m7G rewires cellular metabolism, leading to the pathogenesis of primordial dwarfism. Conditional deletion of the catalytic enzyme Mettl1 or missense mutation of the scaffold protein Wdr4 severely impaired endochondral bone formation and bone mass accrual. Mechanistically, Mettl1 knockout decreased abundance of m7G-modified tRNAs and inhibited translation of mRNAs relating to cytoskeleton and Rho GTPase signaling. Meanwhile, Mettl1 knockout enhanced cellular energy metabolism despite of incompetent proliferation and osteogenic commitment. Further exploration revealed that impaired Rho GTPase signaling upregulated branched-chain amino acid transaminase 1 (BCAT1) level that rewired cell metabolism and restricted intracellular α-ketoglutarate (αKG). Supplementation of αKG ameliorated the skeletal defect of Mettl1-deficient mice. In addition to the selective translation of metabolism-related mRNAs, we further revealed that Mettl1 knockout globally regulated translation via integrated stress response (ISR) and mammalian target of rapamycin complex 1 (mTORC1) signaling. Restoring translation either by targeting ISR or mTORC1 aggravated bone defects of Mettl1-deficient mice. Overall, our study unveils a critical role of m7G tRNA modification in bone development by regulating cellular metabolism, and indicates that suspension of translation initiation as quality control mechanism in response to tRNA dysregulation.","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Clinical Investigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1172/jci177220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Translation of mRNA to protein is tightly regulated by tRNAs, which are subject to various chemical modifications that maintain the structure, stability and function. Deficiency of tRNA N7-methylguanosine (m7G) modification in patients causes a type of primordial dwarfism, but the underlying mechanism remains unknown. Here we report the loss of m7G rewires cellular metabolism, leading to the pathogenesis of primordial dwarfism. Conditional deletion of the catalytic enzyme Mettl1 or missense mutation of the scaffold protein Wdr4 severely impaired endochondral bone formation and bone mass accrual. Mechanistically, Mettl1 knockout decreased abundance of m7G-modified tRNAs and inhibited translation of mRNAs relating to cytoskeleton and Rho GTPase signaling. Meanwhile, Mettl1 knockout enhanced cellular energy metabolism despite of incompetent proliferation and osteogenic commitment. Further exploration revealed that impaired Rho GTPase signaling upregulated branched-chain amino acid transaminase 1 (BCAT1) level that rewired cell metabolism and restricted intracellular α-ketoglutarate (αKG). Supplementation of αKG ameliorated the skeletal defect of Mettl1-deficient mice. In addition to the selective translation of metabolism-related mRNAs, we further revealed that Mettl1 knockout globally regulated translation via integrated stress response (ISR) and mammalian target of rapamycin complex 1 (mTORC1) signaling. Restoring translation either by targeting ISR or mTORC1 aggravated bone defects of Mettl1-deficient mice. Overall, our study unveils a critical role of m7G tRNA modification in bone development by regulating cellular metabolism, and indicates that suspension of translation initiation as quality control mechanism in response to tRNA dysregulation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
骨骼发育过程中的代谢重构是与 tRNA m7G 相关的原始侏儒症的基础。
将 mRNA 翻译成蛋白质受到 tRNA 的严格调控,而 tRNA 会发生各种化学修饰,以保持其结构、稳定性和功能。缺乏 tRNA N7-甲基鸟苷(m7G)修饰的患者会导致一种原始侏儒症,但其潜在机制仍不清楚。在这里,我们报告了 m7G 的缺失重构了细胞代谢,导致了原始侏儒症的发病机制。催化酶Mettl1的条件性缺失或支架蛋白Wdr4的错义突变严重影响了软骨内骨的形成和骨量的增加。从机理上讲,Mettl1 基因敲除会降低 m7G 修饰的 tRNA 的丰度,抑制与细胞骨架和 Rho GTPase 信号转导有关的 mRNA 的翻译。同时,Mettl1基因敲除后,尽管细胞增殖和成骨能力不佳,但细胞能量代谢却增强了。进一步研究发现,Rho GTPase信号传导受损会上调支链氨基酸转氨酶1(BCAT1)的水平,从而重新连接细胞代谢并限制细胞内的α-酮戊二酸(αKG)。补充αKG可以改善Mettl1缺陷小鼠的骨骼缺陷。除了与代谢相关的mRNA的选择性翻译外,我们还进一步发现,Mettl1基因敲除通过综合应激反应(ISR)和哺乳动物雷帕霉素靶标复合体1(mTORC1)信号传导对翻译进行全球调控。通过靶向 ISR 或 mTORC1 恢复翻译会加重 Mettl1 缺失小鼠的骨缺陷。总之,我们的研究揭示了 m7G tRNA 修饰通过调节细胞新陈代谢在骨骼发育中的关键作用,并表明翻译启动暂停是应对 tRNA 失调的质量控制机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
TSC/mTORC1 mediates mTORC2/AKT1 signaling in c-MYC-induced murine hepatocarcinogenesis via centromere protein M. YTHDF1 loss in dendritic cells potentiates radiation-induced antitumor immunity via STING-dependent type I IFN production. Proteogenomic analysis integrated with electronic health records data reveals disease-associated variants in Black Americans. Stimulation of an entorhinal-hippocampal extinction circuit facilitates fear extinction in a post-traumatic stress disorder model. Innate immune cell activation by adjuvant AS01 in human lymph node explants is age-independent.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1