首页 > 最新文献

The Journal of Clinical Investigation最新文献

英文 中文
TSC/mTORC1 mediates mTORC2/AKT1 signaling in c-MYC-induced murine hepatocarcinogenesis via centromere protein M. TSC/mTORC1通过中心粒蛋白M在c-MYC诱导的小鼠肝癌发生过程中介导mTORC2/AKT1信号传导。
Pub Date : 2024-09-26 DOI: 10.1172/jci174415
Yi Zhou,Shu Zhang,Guoteng Qiu,Xue Wang,Andrew Yonemura,Hongwei Xu,Guofei Cui,Shanshan Deng,Joanne Chun,Nianyong Chen,Meng Xu,Xinhua Song,Jingwen Wang,Zijing Xu,Youping Deng,Matthias Evert,Diego F Calvisi,Shumei Lin,Haichuan Wang,Xin Chen
Activated mTORC2/AKT signaling plays a role in hepatocellular carcinoma (HCC). Research has shown that TSC/mTORC1 and FOXO1 are distinct downstream effectors of AKT signaling in liver regeneration and metabolism. However, the mechanisms by which these pathways mediate mTORC2/AKT activation in HCC are not yet fully understood. Amplification and activation of c-MYC is a key molecular event in HCC. In this study, we explored the roles of TSC/mTORC1 and FOXO1 as downstream effectors of mTORC2/AKT1 in c-MYC-induced hepatocarcinogenesis. Using various genetic approaches in mice, we found that manipulating the FOXO pathway had minimal impact on c-MYC-induced HCC. In contrast, loss of mTORC2 inhibited c-MYC-induced HCC, an effect that was completely reversed by ablating TSC2, which activated mTORC1. Additionally, we discovered that p70/RPS6 and 4EBP1/eIF4E act downstream of mTORC1, regulating distinct molecular pathways. Notably, the 4EBP1/eIF4E cascade is crucial for cell proliferation and glycolysis in c-MYC-induced HCC. We also identified centromere protein M (CENPM) as a downstream target of the TSC2/mTORC1 pathway in c-MYC-driven hepatocarcinogenesis, and its ablation entirely inhibited c-MYC-dependent HCC formation. Our findings demonstrate that the TSC/mTORC1/CENPM pathway, rather than the FOXO cascade, is the primary signaling pathway regulating c-MYC-driven hepatocarcinogenesis. Targeting CENPM holds therapeutic potential for treating c-MYC-driven HCC.
激活的 mTORC2/AKT 信号在肝细胞癌(HCC)中发挥着作用。研究表明,TSC/mTORC1 和 FOXO1 是 AKT 信号在肝脏再生和新陈代谢中的不同下游效应器。然而,这些途径在 HCC 中介导 mTORC2/AKT 激活的机制尚未完全明了。c-MYC 的扩增和激活是 HCC 中的一个关键分子事件。在本研究中,我们探讨了 TSC/mTORC1 和 FOXO1 作为 mTORC2/AKT1 的下游效应器在 c-MYC 诱导的肝癌发生中的作用。通过在小鼠中使用各种遗传方法,我们发现操纵 FOXO 通路对 c-MYC 诱导的 HCC 影响甚微。相反,缺失 mTORC2 可抑制 c-MYC 诱导的 HCC,而通过消减 TSC2(TSC2 激活 mTORC1)可完全逆转这种影响。此外,我们还发现 p70/RPS6 和 4EBP1/eIF4E 作用于 mTORC1 下游,调节不同的分子通路。值得注意的是,在 c-MYC 诱导的 HCC 中,4EBP1/eIF4E 级联对细胞增殖和糖酵解至关重要。我们还发现中心粒蛋白M(CENPM)是TSC2/mTORC1通路在c-MYC驱动的肝癌发生中的下游靶点,消减该蛋白可完全抑制c-MYC依赖性HCC的形成。我们的研究结果表明,TSC/mTORC1/CENPM通路而非FOXO级联是调控c-MYC驱动的肝癌发生的主要信号通路。以 CENPM 为靶点具有治疗 c-MYC 驱动的 HCC 的潜力。
{"title":"TSC/mTORC1 mediates mTORC2/AKT1 signaling in c-MYC-induced murine hepatocarcinogenesis via centromere protein M.","authors":"Yi Zhou,Shu Zhang,Guoteng Qiu,Xue Wang,Andrew Yonemura,Hongwei Xu,Guofei Cui,Shanshan Deng,Joanne Chun,Nianyong Chen,Meng Xu,Xinhua Song,Jingwen Wang,Zijing Xu,Youping Deng,Matthias Evert,Diego F Calvisi,Shumei Lin,Haichuan Wang,Xin Chen","doi":"10.1172/jci174415","DOIUrl":"https://doi.org/10.1172/jci174415","url":null,"abstract":"Activated mTORC2/AKT signaling plays a role in hepatocellular carcinoma (HCC). Research has shown that TSC/mTORC1 and FOXO1 are distinct downstream effectors of AKT signaling in liver regeneration and metabolism. However, the mechanisms by which these pathways mediate mTORC2/AKT activation in HCC are not yet fully understood. Amplification and activation of c-MYC is a key molecular event in HCC. In this study, we explored the roles of TSC/mTORC1 and FOXO1 as downstream effectors of mTORC2/AKT1 in c-MYC-induced hepatocarcinogenesis. Using various genetic approaches in mice, we found that manipulating the FOXO pathway had minimal impact on c-MYC-induced HCC. In contrast, loss of mTORC2 inhibited c-MYC-induced HCC, an effect that was completely reversed by ablating TSC2, which activated mTORC1. Additionally, we discovered that p70/RPS6 and 4EBP1/eIF4E act downstream of mTORC1, regulating distinct molecular pathways. Notably, the 4EBP1/eIF4E cascade is crucial for cell proliferation and glycolysis in c-MYC-induced HCC. We also identified centromere protein M (CENPM) as a downstream target of the TSC2/mTORC1 pathway in c-MYC-driven hepatocarcinogenesis, and its ablation entirely inhibited c-MYC-dependent HCC formation. Our findings demonstrate that the TSC/mTORC1/CENPM pathway, rather than the FOXO cascade, is the primary signaling pathway regulating c-MYC-driven hepatocarcinogenesis. Targeting CENPM holds therapeutic potential for treating c-MYC-driven HCC.","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142328891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
YTHDF1 loss in dendritic cells potentiates radiation-induced antitumor immunity via STING-dependent type I IFN production. 树突状细胞中 YTHDF1 的缺失可通过 STING 依赖性 IFN 的产生增强辐射诱导的抗肿瘤免疫。
Pub Date : 2024-09-26 DOI: 10.1172/jci181612
Chuangyu Wen,Liangliang Wang,András Piffkó,Dapeng Chen,Xianbin Yu,Katarzyna Zawieracz,Jason Bugno,Kaiting Yang,Emile Z Naccasha,Fei Ji,Jiaai Wang,Xiaona Huang,Stephen Y Luo,Lei Tan,Bin Shen,Cheng Luo,Megan E McNerney,Steven J Chmura,Ainhoa Arina,Sean P Pitroda,Chuan He,Hua Liang,Ralph R Weichselbaum
RNA N6-methyladenosine (m6A) reader YTHDF1 is implicated in cancer etiology and progression. We discovered that radiotherapy (RT) increased YTHDF1 expression in dendritic cells (DCs) of PBMCs from cancer patients, but not in other immune cells tested. Elevated YTHDF1 expression of DCs was associated with poor outcomes in patients receiving RT. We found that loss of Ythdf1 in DCs enhanced the antitumor effects of ionizing radiation (IR) via increasing the cross-priming capacity of DCs across multiple murine cancer models. Mechanistically, IR upregulated YTHDF1 expression in DCs through STING-IFN-I signaling. YTHDF1 in turn triggered STING degradation by increasing lysosomal cathepsins, thereby reducing IFN-I production. We created a YTHDF1 deletion/inhibition prototype DC vaccine, significantly improving the therapeutic effect of RT and radio-immunotherapy in a murine melanoma model. Our findings reveal a new layer of regulation between YTHDF1/m6A and STING in response to IR, which opens new paths for the development of YTHDF1-targeting therapies.
RNA的N6-甲基腺苷(m6A)阅读器YTHDF1与癌症的病因和进展有关。我们发现,放疗(RT)会增加癌症患者 PBMC 的树突状细胞(DC)中 YTHDF1 的表达,但不会增加其他免疫细胞中 YTHDF1 的表达。DC中YTHDF1表达的升高与接受RT治疗患者的不良预后有关。我们发现,在多种小鼠癌症模型中,DCs 中 Ythdf1 的缺失会通过提高 DCs 的交叉刺激能力来增强电离辐射(IR)的抗肿瘤效果。从机理上讲,IR通过STING-IFN-I信号转导上调DC中YTHDF1的表达。YTHDF1反过来又通过增加溶酶体酪蛋白引发STING降解,从而减少IFN-I的产生。我们创建了一种YTHDF1缺失/抑制原型DC疫苗,显著提高了RT和放射免疫疗法在小鼠黑色素瘤模型中的治疗效果。我们的研究结果揭示了YTHDF1/m6A和STING之间对IR反应的新的调控层,这为开发YTHDF1靶向疗法开辟了新的道路。
{"title":"YTHDF1 loss in dendritic cells potentiates radiation-induced antitumor immunity via STING-dependent type I IFN production.","authors":"Chuangyu Wen,Liangliang Wang,András Piffkó,Dapeng Chen,Xianbin Yu,Katarzyna Zawieracz,Jason Bugno,Kaiting Yang,Emile Z Naccasha,Fei Ji,Jiaai Wang,Xiaona Huang,Stephen Y Luo,Lei Tan,Bin Shen,Cheng Luo,Megan E McNerney,Steven J Chmura,Ainhoa Arina,Sean P Pitroda,Chuan He,Hua Liang,Ralph R Weichselbaum","doi":"10.1172/jci181612","DOIUrl":"https://doi.org/10.1172/jci181612","url":null,"abstract":"RNA N6-methyladenosine (m6A) reader YTHDF1 is implicated in cancer etiology and progression. We discovered that radiotherapy (RT) increased YTHDF1 expression in dendritic cells (DCs) of PBMCs from cancer patients, but not in other immune cells tested. Elevated YTHDF1 expression of DCs was associated with poor outcomes in patients receiving RT. We found that loss of Ythdf1 in DCs enhanced the antitumor effects of ionizing radiation (IR) via increasing the cross-priming capacity of DCs across multiple murine cancer models. Mechanistically, IR upregulated YTHDF1 expression in DCs through STING-IFN-I signaling. YTHDF1 in turn triggered STING degradation by increasing lysosomal cathepsins, thereby reducing IFN-I production. We created a YTHDF1 deletion/inhibition prototype DC vaccine, significantly improving the therapeutic effect of RT and radio-immunotherapy in a murine melanoma model. Our findings reveal a new layer of regulation between YTHDF1/m6A and STING in response to IR, which opens new paths for the development of YTHDF1-targeting therapies.","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142328898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stimulation of an entorhinal-hippocampal extinction circuit facilitates fear extinction in a post-traumatic stress disorder model. 在创伤后应激障碍模型中,刺激内侧-海马消减回路可促进恐惧消减。
Pub Date : 2024-09-24 DOI: 10.1172/jci181095
Ze-Jie Lin,Xue Gu,Wan-Kun Gong,Mo Wang,Yan-Jiao Wu,Qi Wang,Xin-Rong Wu,Xin-Yu Zhao,Michael X Zhu,Lu-Yang Wang,Quanying Liu,Ti-Fei Yuan,Wei-Guang Li,Tian-Le Xu
Effective psychotherapy of post-traumatic stress disorder (PTSD) remains challenging due to the fragile nature of fear extinction, for which ventral hippocampal CA1 (vCA1) region is considered as a central hub. However, neither the core pathway nor the cellular mechanisms involved in implementing extinction are known. Here, we unveil a direct pathway, where layer 2a fan cells in the lateral entorhinal cortex (LEC) target parvalbumin-expressing interneurons (PV-INs) in the vCA1 region to propel low gamma-band synchronization of the LEC-vCA1 activity during extinction learning. Bidirectional manipulations of either hippocampal PV-INs or LEC fan cells sufficed fear extinction. Gamma entrainment of vCA1 by deep brain stimulation (DBS) or noninvasive transcranial alternating current stimulation (tACS) of LEC persistently enhanced the PV-IN activity in vCA1, thereby promoting fear extinction. These results demonstrate that the LEC-vCA1 pathway forms a top-down motif to empower low gamma-band oscillations that facilitate fear extinction. Finally, application of low gamma DBS and tACS to a mouse model with persistent PTSD showed potent efficacy, suggesting that the dedicated LEC-vCA1 pathway can be stimulated for therapy to remove traumatic memory trace.
创伤后应激障碍(PTSD)的有效心理治疗仍然具有挑战性,因为恐惧消退的过程非常脆弱,而腹侧海马 CA1(vCA1)区被认为是恐惧消退的中心枢纽。然而,实施恐惧消退的核心途径和细胞机制均不为人所知。在这里,我们揭示了一条直接通路,即外侧内侧皮层(LEC)的2a层扇形细胞以vCA1区的副发光素表达中间神经元(PV-INs)为目标,在绝迹学习过程中推动LEC-vCA1活动的低伽马波段同步。对海马PV-INs或LEC扇形细胞的双向操作都足以使恐惧消退。通过脑深部刺激(DBS)或无创经颅交变电流刺激(tACS)对LEC进行伽马夹带vCA1,可持续增强vCA1中的PV-IN活动,从而促进恐惧的消退。这些结果表明,LEC-vCA1通路形成了一种自上而下的模式,赋予低γ波段振荡以力量,从而促进恐惧的消退。最后,应用低伽马DBS和tACS对持续性创伤后应激障碍小鼠模型进行治疗显示出了强大的疗效,这表明专用的LEC-vCA1通路可用于刺激治疗,以消除创伤记忆痕迹。
{"title":"Stimulation of an entorhinal-hippocampal extinction circuit facilitates fear extinction in a post-traumatic stress disorder model.","authors":"Ze-Jie Lin,Xue Gu,Wan-Kun Gong,Mo Wang,Yan-Jiao Wu,Qi Wang,Xin-Rong Wu,Xin-Yu Zhao,Michael X Zhu,Lu-Yang Wang,Quanying Liu,Ti-Fei Yuan,Wei-Guang Li,Tian-Le Xu","doi":"10.1172/jci181095","DOIUrl":"https://doi.org/10.1172/jci181095","url":null,"abstract":"Effective psychotherapy of post-traumatic stress disorder (PTSD) remains challenging due to the fragile nature of fear extinction, for which ventral hippocampal CA1 (vCA1) region is considered as a central hub. However, neither the core pathway nor the cellular mechanisms involved in implementing extinction are known. Here, we unveil a direct pathway, where layer 2a fan cells in the lateral entorhinal cortex (LEC) target parvalbumin-expressing interneurons (PV-INs) in the vCA1 region to propel low gamma-band synchronization of the LEC-vCA1 activity during extinction learning. Bidirectional manipulations of either hippocampal PV-INs or LEC fan cells sufficed fear extinction. Gamma entrainment of vCA1 by deep brain stimulation (DBS) or noninvasive transcranial alternating current stimulation (tACS) of LEC persistently enhanced the PV-IN activity in vCA1, thereby promoting fear extinction. These results demonstrate that the LEC-vCA1 pathway forms a top-down motif to empower low gamma-band oscillations that facilitate fear extinction. Finally, application of low gamma DBS and tACS to a mouse model with persistent PTSD showed potent efficacy, suggesting that the dedicated LEC-vCA1 pathway can be stimulated for therapy to remove traumatic memory trace.","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142321025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling primary microcephaly with human brain organoids reveals fundamental roles of CIT kinase activity. 用人脑器官模拟原发性小头畸形揭示 CIT 激酶活性的基本作用
Pub Date : 2024-09-24 DOI: 10.1172/jci175435
Gianmarco Pallavicini,Amanda Moccia,Giorgia Iegiani,Roberta Parolisi,Emily R Peirent,Gaia Elena Berto,Martina Lorenzati,Rami Y Tshuva,Alessia Ferraro,Fiorella Balzac,Emilia Turco,Shachi U Salvi,Hedvig F Myklebust,Sophia Wang,Julia Eisenberg,Maushmi Chitale,Navjit S Girgla,Enrica Boda,Orly Reiner,Annalisa Buffo,Ferdinando Di Cunto,Stephanie L Bielas
Brain size and cellular heterogeneity are tightly regulated by species-specific proliferation and differentiation of multipotent neural progenitor cells (NPCs). Errors in this process are among the mechanisms of primary hereditary microcephaly (MCPH), a group of disorders characterized by reduced brain size and intellectual disability. Biallelic CIT missense variants that disrupt kinase function (CITKI/KI) and frameshift loss-of-function variants (CITFS/FS) are the genetic basis for MCPH17; however, the function of CIT catalytic activity in brain development and NPC cytokinesis is unknown. Therefore, we created the CitKI/KI mouse model and found that it does not phenocopy human microcephaly, unlike biallelic CitFS/FS animals. Nevertheless, both Cit models exhibited binucleation, DNA damage, and apoptosis. To investigate human-specific mechanisms of CIT microcephaly, we generated CITKI/KI and CITFS/FS human forebrain organoids. We found that CITKI/KI and CITFS/FS organoids lose cytoarchitectural complexity, transitioning from pseudostratified to simple neuroepithelium. This change was associated with defects that disrupt polarity of NPC cytokinesis, in addition to elevating apoptosis. Together, our results indicate that both CIT catalytic and scaffolding functions in NPC cytokinesis are critical for human corticogenesis. Species differences in corticogenesis and the dynamic 3D features of NPC mitosis underscore the utility of human forebrain organoid models for understanding human microcephaly.
大脑的大小和细胞的异质性受到多能神经祖细胞(NPC)物种特异性增殖和分化的严格调控。这一过程中的错误是原发性遗传性小头畸形(MCPH)的发病机制之一,MCPH 是一组以脑尺寸缩小和智力障碍为特征的疾病。破坏激酶功能的双叶 CIT 错义变体(CITKI/KI)和框移功能缺失变体(CITFS/FS)是 MCPH17 的遗传基础;然而,CIT 催化活性在大脑发育和 NPC 细胞分裂中的功能尚不清楚。因此,我们创建了 CitKI/KI 小鼠模型,并发现它与双倍拷贝的 CitFS/FS 动物不同,不会表现出人类小头畸形。然而,两种 Cit 模型都表现出双核、DNA 损伤和细胞凋亡。为了研究 CIT 小头畸形的人类特异性机制,我们生成了 CITKI/KI 和 CITFS/FS 人类前脑器官组织。我们发现,CITKI/KI 和 CITFS/FS 器官组织失去了细胞结构的复杂性,从假增生过渡到简单的神经上皮。这种变化除了与细胞凋亡增加有关外,还与破坏 NPC 细胞分裂极性的缺陷有关。我们的研究结果表明,CIT 在 NPC 细胞发生过程中的催化和支架功能对人类皮质的发生至关重要。皮质发生的物种差异和NPC有丝分裂的动态三维特征凸显了人类前脑类器官模型在了解人类小头畸形方面的实用性。
{"title":"Modeling primary microcephaly with human brain organoids reveals fundamental roles of CIT kinase activity.","authors":"Gianmarco Pallavicini,Amanda Moccia,Giorgia Iegiani,Roberta Parolisi,Emily R Peirent,Gaia Elena Berto,Martina Lorenzati,Rami Y Tshuva,Alessia Ferraro,Fiorella Balzac,Emilia Turco,Shachi U Salvi,Hedvig F Myklebust,Sophia Wang,Julia Eisenberg,Maushmi Chitale,Navjit S Girgla,Enrica Boda,Orly Reiner,Annalisa Buffo,Ferdinando Di Cunto,Stephanie L Bielas","doi":"10.1172/jci175435","DOIUrl":"https://doi.org/10.1172/jci175435","url":null,"abstract":"Brain size and cellular heterogeneity are tightly regulated by species-specific proliferation and differentiation of multipotent neural progenitor cells (NPCs). Errors in this process are among the mechanisms of primary hereditary microcephaly (MCPH), a group of disorders characterized by reduced brain size and intellectual disability. Biallelic CIT missense variants that disrupt kinase function (CITKI/KI) and frameshift loss-of-function variants (CITFS/FS) are the genetic basis for MCPH17; however, the function of CIT catalytic activity in brain development and NPC cytokinesis is unknown. Therefore, we created the CitKI/KI mouse model and found that it does not phenocopy human microcephaly, unlike biallelic CitFS/FS animals. Nevertheless, both Cit models exhibited binucleation, DNA damage, and apoptosis. To investigate human-specific mechanisms of CIT microcephaly, we generated CITKI/KI and CITFS/FS human forebrain organoids. We found that CITKI/KI and CITFS/FS organoids lose cytoarchitectural complexity, transitioning from pseudostratified to simple neuroepithelium. This change was associated with defects that disrupt polarity of NPC cytokinesis, in addition to elevating apoptosis. Together, our results indicate that both CIT catalytic and scaffolding functions in NPC cytokinesis are critical for human corticogenesis. Species differences in corticogenesis and the dynamic 3D features of NPC mitosis underscore the utility of human forebrain organoid models for understanding human microcephaly.","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142321028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Innate immune cell activation by adjuvant AS01 in human lymph node explants is age-independent. 佐剂 AS01 对人体淋巴结外植体先天性免疫细胞的激活与年龄无关。
Pub Date : 2024-09-24 DOI: 10.1172/jci174144
Vicki V Stylianou,Kirstie M Bertram,Van Anh Vo,Elizabeth B Dunn,Heeva Baharlou,Darcii J Terre,James Elhindi,Elisabeth Elder,James French,Farid Meybodi,Stéphane T Temmerman,Arnaud M Didierlaurent,Margherita Coccia,Kerrie J Sandgren,Anthony L Cunningham
Vaccine adjuvants are thought to work by stimulating innate immunity in the draining lymph node (LN), although this has not been proven in humans. To bridge data obtained in animals to humans, we have developed an in situ human LN explant model to investigate how adjuvants initiate immunity. Slices of explanted LNs were exposed to vaccine adjuvants and revealed responses that were not detectable in LN cell suspensions. We used this model to compare the liposome-based AS01 with its components MPL and QS-21, and TLR ligands. Liposomes were predominantly taken up by subcapsular sinus-lining macrophages, monocytes and dendritic cells. AS01 induced dendritic cell maturation and a strong pro-inflammatory cytokine response in intact LN slices but not in dissociated cell cultures, in contrast to R848. This suggests the onset of the immune response to AS01 requires a coordinated activation of LN cells in time and space. Consistent with the robust immune response observed in older adults with AS01-adjuvanted vaccines, the AS01 response in human LNs was independent of age, unlike R848. This human LN explant model is a valuable tool for studying the mechanism of action of adjuvants in humans and for screening new formulations to streamline vaccine development.
疫苗佐剂被认为是通过刺激引流淋巴结(LN)中的先天性免疫而发挥作用的,但这一点尚未在人体中得到证实。为了将在动物身上获得的数据与人体相联系,我们开发了一种原位人体淋巴结外植体模型,以研究佐剂如何启动免疫。将切除的 LN 切片暴露于疫苗佐剂,结果发现了在 LN 细胞悬浮液中无法检测到的反应。我们利用这一模型比较了基于脂质体的 AS01 及其成分 MPL 和 QS-21 以及 TLR 配体。脂质体主要被帽状窦下巨噬细胞、单核细胞和树突状细胞吸收。在完整的 LN 切片中,AS01 可诱导树突状细胞成熟,并产生强烈的促炎细胞因子反应,但在离体细胞培养物中却没有这种反应,这与 R848 形成鲜明对比。这表明,对 AS01 的免疫反应的发生需要 LN 细胞在时间和空间上的协调激活。与在使用 AS01 佐剂疫苗的老年人中观察到的强大免疫反应一致,AS01 在人类 LN 中的反应与年龄无关,这与 R848 不同。这种人体 LN 外植体模型是研究佐剂在人体中的作用机制以及筛选新配方以简化疫苗开发的重要工具。
{"title":"Innate immune cell activation by adjuvant AS01 in human lymph node explants is age-independent.","authors":"Vicki V Stylianou,Kirstie M Bertram,Van Anh Vo,Elizabeth B Dunn,Heeva Baharlou,Darcii J Terre,James Elhindi,Elisabeth Elder,James French,Farid Meybodi,Stéphane T Temmerman,Arnaud M Didierlaurent,Margherita Coccia,Kerrie J Sandgren,Anthony L Cunningham","doi":"10.1172/jci174144","DOIUrl":"https://doi.org/10.1172/jci174144","url":null,"abstract":"Vaccine adjuvants are thought to work by stimulating innate immunity in the draining lymph node (LN), although this has not been proven in humans. To bridge data obtained in animals to humans, we have developed an in situ human LN explant model to investigate how adjuvants initiate immunity. Slices of explanted LNs were exposed to vaccine adjuvants and revealed responses that were not detectable in LN cell suspensions. We used this model to compare the liposome-based AS01 with its components MPL and QS-21, and TLR ligands. Liposomes were predominantly taken up by subcapsular sinus-lining macrophages, monocytes and dendritic cells. AS01 induced dendritic cell maturation and a strong pro-inflammatory cytokine response in intact LN slices but not in dissociated cell cultures, in contrast to R848. This suggests the onset of the immune response to AS01 requires a coordinated activation of LN cells in time and space. Consistent with the robust immune response observed in older adults with AS01-adjuvanted vaccines, the AS01 response in human LNs was independent of age, unlike R848. This human LN explant model is a valuable tool for studying the mechanism of action of adjuvants in humans and for screening new formulations to streamline vaccine development.","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142321026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pharmacological regeneration of sensory hair cells restores afferent innervation and vestibular function. 药理再生感觉毛细胞可恢复传入神经支配和前庭功能。
Pub Date : 2024-09-24 DOI: 10.1172/jci181201
Hanae Lahlou,Hong Zhu,Wu Zhou,Albert Sb Edge
The sensory cells that transduce the signals for hearing and balance are highly specialized mechanoreceptors called hair cells that reside in the sensory epithelia of the inner ear. Loss of hair cells from toxin exposure and age can cause balance disorders and is essentially irreversible due to the inability of mammalian vestibular organs to regenerate physiologically active hair cells. Here, we show substantial regeneration of hair cells in a mouse model of vestibular damage by treatment with a combination of glycogen synthase kinase 3β and histone deacetylase inhibitors. The drugs stimulated supporting cell proliferation and differentiation into hair cells. The new hair cells were reinnervated by vestibular afferent neurons, rescuing otolith function by restoring head translation-evoked otolith afferent responses and vestibuloocular reflexes. Drugs that regenerate hair cells thus represent a potential therapeutic approach to the treatment of balance disorders.
传递听觉和平衡信号的感觉细胞是高度特化的机械感受器,称为毛细胞,位于内耳的感觉上皮细胞中。由于哺乳动物的前庭器官无法再生具有生理活性的毛细胞,毒素暴露和年龄增长造成的毛细胞损失会导致平衡失调,而且基本上是不可逆的。在这里,我们用糖原合酶激酶 3β 和组蛋白去乙酰化酶抑制剂的组合治疗小鼠前庭损伤模型,结果显示毛细胞大量再生。这些药物刺激支持细胞增殖并分化成毛细胞。新的毛细胞被前庭传入神经元重新支配,通过恢复头部平移诱发的耳石传入反应和前庭反射来挽救耳石功能。因此,再生毛细胞的药物是治疗平衡失调的一种潜在治疗方法。
{"title":"Pharmacological regeneration of sensory hair cells restores afferent innervation and vestibular function.","authors":"Hanae Lahlou,Hong Zhu,Wu Zhou,Albert Sb Edge","doi":"10.1172/jci181201","DOIUrl":"https://doi.org/10.1172/jci181201","url":null,"abstract":"The sensory cells that transduce the signals for hearing and balance are highly specialized mechanoreceptors called hair cells that reside in the sensory epithelia of the inner ear. Loss of hair cells from toxin exposure and age can cause balance disorders and is essentially irreversible due to the inability of mammalian vestibular organs to regenerate physiologically active hair cells. Here, we show substantial regeneration of hair cells in a mouse model of vestibular damage by treatment with a combination of glycogen synthase kinase 3β and histone deacetylase inhibitors. The drugs stimulated supporting cell proliferation and differentiation into hair cells. The new hair cells were reinnervated by vestibular afferent neurons, rescuing otolith function by restoring head translation-evoked otolith afferent responses and vestibuloocular reflexes. Drugs that regenerate hair cells thus represent a potential therapeutic approach to the treatment of balance disorders.","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142321034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proteogenomic analysis integrated with electronic health records data reveals disease-associated variants in Black Americans. 与电子健康记录数据相结合的蛋白质基因组分析揭示了美国黑人的疾病相关变异。
Pub Date : 2024-09-24 DOI: 10.1172/jci181802
Usman A Tahir,Jacob L Barber,Daniel E Cruz,Meltem Ece Kars,Shuliang Deng,Bjoernar Tuftin,Madeline G Gillman,Mark D Benson,Jeremy M Robbins,Zsu-Zsu Chen,Prashant Rao,Daniel H Katz,Laurie Farrell,Tamar Sofer,Michael E Hall,Lynette Ekunwe,Russell P Tracy,Peter Durda,Kent D Taylor,Yongmei Liu,W Craig Johnson,Xiuqing Guo,Yii-Der Ida Chen,Ani W Manichaikul,Deepti Jain,Thomas J Wang,Alex P Reiner,Pradeep Natarajan,Yuval Itan,Stephen S Rich,Jerome I Rotter,James G Wilson,Laura M Raffield,Robert E Gerszten
BACKGROUNDMost genome wide association studies (GWAS) of plasma proteomics have focused on White individuals of European ancestry, limiting biological insight from other ancestry enriched protein quantitative loci (pQTL).METHODSWe conducted a discovery GWAS of ~3,000 plasma proteins measured by the antibody based Olink platform in 1,054 Black adults from the Jackson Heart Study (JHS), and validated our findings in the Multi-Ethnic Study of Atherosclerosis (MESA). The genetic architecture of identified pQTLs were further explored through fine mapping and admixture association analysis. Finally, using our pQTL findings, we performed a phenome wide association study (PheWAS) across two large multi-ethnic electronic health record (EHR) systems in All of Us and BioMe.RESULTSWe identified 1002 pQTLs for 925 proteins. Fine mapping and admixture analyses suggested allelic heterogeneity of the plasma proteome across diverse populations. We identified associations for variants enriched in African ancestry, many in diseases that lack precise biomarkers, including cis-pQTLs for Cathepsin L (CTSL) and Siglec-9 that were linked with sarcoidosis and non-Hodgkin's lymphoma, respectively. We found concordant associations across clinical diagnoses and laboratory measurements, elucidating disease pathways, including a cis-pQTL associated with circulating CD58, white blood cell count, and multiple sclerosis.CONCLUSIONSOur findings emphasize the value of leveraging diverse populations to enhance biological insights from proteomics GWAS, and we have made this resource readily available as an interactive web portal.
背景大多数血浆蛋白质组学的全基因组关联研究(GWAS)都集中在欧洲血统的白人个体上,从而限制了对其他血统富集蛋白质定量位点(pQTL)的生物学洞察力。方法我们利用基于抗体的 Olink 平台对杰克逊心脏病研究(JHS)中的 1,054 名黑人成年人的约 3,000 种血浆蛋白质进行了发现性 GWAS 测量,并在动脉粥样硬化多种族研究(MESA)中验证了我们的发现。通过精细作图和掺杂关联分析,我们进一步探索了已鉴定 pQTL 的遗传结构。最后,利用我们的 pQTL 发现,我们在 All of Us 和 BioMe 两个大型多种族电子健康记录(EHR)系统中进行了表型组广泛关联研究(PheWAS)。精细图谱和混杂分析表明,不同人群的血浆蛋白质组存在等位基因异质性。我们发现了富含非洲血统的变异体,其中许多与缺乏精确生物标志物的疾病有关,包括分别与肉样瘤病和非霍奇金淋巴瘤有关的酪蛋白酶 L (CTSL) 和 Siglec-9 的顺式-pQTLs。我们在临床诊断和实验室测量中发现了一致的关联,阐明了疾病路径,包括与循环 CD58、白细胞计数和多发性硬化症相关的顺式-pQTL。
{"title":"Proteogenomic analysis integrated with electronic health records data reveals disease-associated variants in Black Americans.","authors":"Usman A Tahir,Jacob L Barber,Daniel E Cruz,Meltem Ece Kars,Shuliang Deng,Bjoernar Tuftin,Madeline G Gillman,Mark D Benson,Jeremy M Robbins,Zsu-Zsu Chen,Prashant Rao,Daniel H Katz,Laurie Farrell,Tamar Sofer,Michael E Hall,Lynette Ekunwe,Russell P Tracy,Peter Durda,Kent D Taylor,Yongmei Liu,W Craig Johnson,Xiuqing Guo,Yii-Der Ida Chen,Ani W Manichaikul,Deepti Jain,Thomas J Wang,Alex P Reiner,Pradeep Natarajan,Yuval Itan,Stephen S Rich,Jerome I Rotter,James G Wilson,Laura M Raffield,Robert E Gerszten","doi":"10.1172/jci181802","DOIUrl":"https://doi.org/10.1172/jci181802","url":null,"abstract":"BACKGROUNDMost genome wide association studies (GWAS) of plasma proteomics have focused on White individuals of European ancestry, limiting biological insight from other ancestry enriched protein quantitative loci (pQTL).METHODSWe conducted a discovery GWAS of ~3,000 plasma proteins measured by the antibody based Olink platform in 1,054 Black adults from the Jackson Heart Study (JHS), and validated our findings in the Multi-Ethnic Study of Atherosclerosis (MESA). The genetic architecture of identified pQTLs were further explored through fine mapping and admixture association analysis. Finally, using our pQTL findings, we performed a phenome wide association study (PheWAS) across two large multi-ethnic electronic health record (EHR) systems in All of Us and BioMe.RESULTSWe identified 1002 pQTLs for 925 proteins. Fine mapping and admixture analyses suggested allelic heterogeneity of the plasma proteome across diverse populations. We identified associations for variants enriched in African ancestry, many in diseases that lack precise biomarkers, including cis-pQTLs for Cathepsin L (CTSL) and Siglec-9 that were linked with sarcoidosis and non-Hodgkin's lymphoma, respectively. We found concordant associations across clinical diagnoses and laboratory measurements, elucidating disease pathways, including a cis-pQTL associated with circulating CD58, white blood cell count, and multiple sclerosis.CONCLUSIONSOur findings emphasize the value of leveraging diverse populations to enhance biological insights from proteomics GWAS, and we have made this resource readily available as an interactive web portal.","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142321024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long-lived lung megakaryocytes contribute to platelet recovery in thrombocytopenia models. 长寿命肺巨核细胞有助于血小板减少模型中血小板的恢复。
Pub Date : 2024-09-19 DOI: 10.1172/jci181111
Alison C Livada,Kathleen E McGrath,Michael W Malloy,Chen Li,Sara K Ture,Paul D Kingsley,Anne D Koniski,Leah A Vit,Katherine E Nolan,Deanne Mickelsen,Grace E Monette,Preeti Maurya,James Palis,Craig N Morrell
Lung megakaryocytes (Mks) are largely extravascular with an immune phenotype (1). Because bone marrow (BM) Mks are short-lived it has been assumed that extravascular lung Mks are constantly 'seeded' from the BM. To investigate lung Mk origins and how that impacts their functions, we developed methods to specifically label lung Mks using CFSE dye and biotin delivered oropharyngeal. Labeled lung Mks were present for up to four months, while BM Mks had a <1 week lifespan. In a parabiosis model, lung Mks were partially replaced over 1-month from a circulating source. Unlike tissue-resident macrophages, using MDS1-Cre-ERT2 TdTomato mice, we found that lung Mks arise from hematopoietic stem cells. However, studies with FlkSwitch mTmG mice showed that lung Mks are derived from a Flt3-independent lineage that does not go through a multipotent progenitor. CFSE labeling to track lung Mk-derived platelets showed that about 10% of circulating platelets are lung resident Mk-derived at steady state, but in sterile thrombocytopenia this was doubled (about 20%). Lung-derived platelets were similarly increased in a malaria infection model (Plasmodium yoelii) typified by thrombocytopenia. These studies indicate that lung Mks arise from a Flt3-negative BM source, are long-lived, and contribute more platelets during thrombocytopenia.
肺巨核细胞(Mks)在很大程度上是具有免疫表型的血管外细胞(1)。由于骨髓(BM)巨核细胞的寿命很短,人们一直认为肺血管外巨核细胞是不断从BM "播种 "而来的。为了研究肺Mk的起源及其对其功能的影响,我们开发了使用CFSE染料和生物素递送口咽特异性标记肺Mk的方法。被标记的肺Mk可存活长达四个月,而BM Mk的存活期不足一周。在准同种异体移植模型中,肺Mks在1个月的时间内被循环来源部分替代。与组织驻留巨噬细胞不同的是,通过使用 MDS1-Cre-ERT2 TdTomato 小鼠,我们发现肺 Mks 来自造血干细胞。然而,对 FlkSwitch mTmG 小鼠的研究表明,肺 Mks 来源于不依赖 Flt3 的血统,不经过多能祖细胞。用 CFSE 标记追踪肺 Mk 衍生血小板的结果显示,在稳定状态下,约 10% 的循环血小板是肺常驻 Mk 衍生的,但在无菌血小板减少症中,这一比例增加了一倍(约 20%)。在以血小板减少为典型特征的疟疾感染模型(疟原虫)中,肺源性血小板也同样增加。这些研究表明,肺源性 Mk 来源于 Flt3 阴性的 BM,寿命长,在血小板减少时可贡献更多血小板。
{"title":"Long-lived lung megakaryocytes contribute to platelet recovery in thrombocytopenia models.","authors":"Alison C Livada,Kathleen E McGrath,Michael W Malloy,Chen Li,Sara K Ture,Paul D Kingsley,Anne D Koniski,Leah A Vit,Katherine E Nolan,Deanne Mickelsen,Grace E Monette,Preeti Maurya,James Palis,Craig N Morrell","doi":"10.1172/jci181111","DOIUrl":"https://doi.org/10.1172/jci181111","url":null,"abstract":"Lung megakaryocytes (Mks) are largely extravascular with an immune phenotype (1). Because bone marrow (BM) Mks are short-lived it has been assumed that extravascular lung Mks are constantly 'seeded' from the BM. To investigate lung Mk origins and how that impacts their functions, we developed methods to specifically label lung Mks using CFSE dye and biotin delivered oropharyngeal. Labeled lung Mks were present for up to four months, while BM Mks had a <1 week lifespan. In a parabiosis model, lung Mks were partially replaced over 1-month from a circulating source. Unlike tissue-resident macrophages, using MDS1-Cre-ERT2 TdTomato mice, we found that lung Mks arise from hematopoietic stem cells. However, studies with FlkSwitch mTmG mice showed that lung Mks are derived from a Flt3-independent lineage that does not go through a multipotent progenitor. CFSE labeling to track lung Mk-derived platelets showed that about 10% of circulating platelets are lung resident Mk-derived at steady state, but in sterile thrombocytopenia this was doubled (about 20%). Lung-derived platelets were similarly increased in a malaria infection model (Plasmodium yoelii) typified by thrombocytopenia. These studies indicate that lung Mks arise from a Flt3-negative BM source, are long-lived, and contribute more platelets during thrombocytopenia.","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142273500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PAC1 constrains type II inflammation through promotion of CGRP signaling in ILC2s. PAC1 通过促进 ILC2 的 CGRP 信号传导来制约 II 型炎症。
Pub Date : 2024-09-17 DOI: 10.1172/jci180109
Yuan Jin,Bowen Liu,Qiuyu Li,Xiangyan Meng,Xiaowei Tang,Yan Jin,Yuxin Yin
Dysfunction of group II innate lymphoid cells (ILC2s) plays an important role in the development of type II inflammation-related diseases such as asthma and pulmonary fibrosis. Notably, neural signals are increasingly recognized as pivotal regulators of ILC2s. However, how ILC2s intrinsically modulate their responsiveness to these neural signals is still largely unknown. Here, using single-cell RNA sequencing, we found that the immune regulatory molecule PAC1 (phosphatase of activated cells 1) selectively promotes the signaling of neuropeptide CGRP (calcitonin gene-related peptide) in ILC2s through a cell-intrinsic manner. Genetic ablation of PAC1 in ILC2s substantially impaired the inhibitory effect of CGRP on proliferation and IL-13 secretion. PAC1 deficiency significantly exacerbated allergic airway inflammation induced by Alternaria alternata or papain in mice. Moreover, in human circulating ILC2s, the expression level of PAC1 was also significantly negatively correlated with the cell amount and the expression level of IL13. Mechanistically, PAC1 was necessary for ensuring the expression of CGRP-response genes by influencing chromatin accessibility. In summary, our study demonstrated that PAC1 is an important regulator of ILC2 responses and we proposed that PAC1 is a potential target for therapeutic interventions of type II inflammation-related diseases.
第二类先天性淋巴细胞(ILC2s)的功能障碍在哮喘和肺纤维化等第二类炎症相关疾病的发生发展中起着重要作用。值得注意的是,神经信号越来越被认为是 ILC2s 的关键调节因子。然而,ILC2s 如何从本质上调节其对这些神经信号的反应能力在很大程度上仍是未知数。在这里,我们利用单细胞 RNA 测序发现,免疫调节分子 PAC1(活化细胞磷酸酶 1)通过细胞内在方式选择性地促进 ILC2 中神经肽 CGRP(降钙素基因相关肽)的信号转导。遗传性消减 ILC2s 中的 PAC1 会大大削弱 CGRP 对增殖和 IL-13 分泌的抑制作用。PAC1 缺乏会明显加剧交替孢霉或木瓜蛋白酶诱导的小鼠过敏性气道炎症。此外,在人类循环 ILC2 中,PAC1 的表达水平与细胞数量和 IL13 的表达水平也呈显著负相关。从机理上讲,PAC1 是通过影响染色质可及性来确保 CGRP 响应基因表达的必要条件。总之,我们的研究证明了 PAC1 是 ILC2 反应的重要调节因子,并提出 PAC1 是治疗干预 II 型炎症相关疾病的潜在靶点。
{"title":"PAC1 constrains type II inflammation through promotion of CGRP signaling in ILC2s.","authors":"Yuan Jin,Bowen Liu,Qiuyu Li,Xiangyan Meng,Xiaowei Tang,Yan Jin,Yuxin Yin","doi":"10.1172/jci180109","DOIUrl":"https://doi.org/10.1172/jci180109","url":null,"abstract":"Dysfunction of group II innate lymphoid cells (ILC2s) plays an important role in the development of type II inflammation-related diseases such as asthma and pulmonary fibrosis. Notably, neural signals are increasingly recognized as pivotal regulators of ILC2s. However, how ILC2s intrinsically modulate their responsiveness to these neural signals is still largely unknown. Here, using single-cell RNA sequencing, we found that the immune regulatory molecule PAC1 (phosphatase of activated cells 1) selectively promotes the signaling of neuropeptide CGRP (calcitonin gene-related peptide) in ILC2s through a cell-intrinsic manner. Genetic ablation of PAC1 in ILC2s substantially impaired the inhibitory effect of CGRP on proliferation and IL-13 secretion. PAC1 deficiency significantly exacerbated allergic airway inflammation induced by Alternaria alternata or papain in mice. Moreover, in human circulating ILC2s, the expression level of PAC1 was also significantly negatively correlated with the cell amount and the expression level of IL13. Mechanistically, PAC1 was necessary for ensuring the expression of CGRP-response genes by influencing chromatin accessibility. In summary, our study demonstrated that PAC1 is an important regulator of ILC2 responses and we proposed that PAC1 is a potential target for therapeutic interventions of type II inflammation-related diseases.","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142245512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CRISPR-Cas13d targeting suppresses repeat-associated non-AUG translation of C9orf72 hexanucleotide repeat RNA. CRISPR-Cas13d靶向抑制了C9orf72六核苷酸重复RNA的重复相关非AUG翻译。
Pub Date : 2024-09-17 DOI: 10.1172/jci179016
Honghe Liu,Xiao-Feng Zhao,Yu-Ning Lu,Lindsey R Hayes,Jiou Wang
A hexanucleotide GGGGCC repeat expansion in the non-coding region of C9orf72 gene is the most common genetic mutation identified in patients with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The resulting repeat RNA and dipeptide repeat proteins from non-conventional repeat translation have been recognized as important markers associated with the diseases. CRISPR-Cas13d, a powerful RNA targeting tool, has faced challenges in effectively targeting RNA with stable secondary structures. Here we report that CRISPR-Cas13d can be optimized to specifically target GGGGCC repeat RNA. Our results demonstrate that the CRISPR-Cas13d system can be harnessed to significantly diminish the translation of poly-dipeptides originating from the GGGGCC repeat RNA. This efficacy has been validated in various cell types, including induced pluripotent stem cells and differentiated motor neurons originating from C9orf72-ALS patients, as well as in C9orf72 repeat transgenic mice. These findings demonstrate the application of CRISPR-Cas13d in targeting RNA with intricate higher-order structures and suggest a potential therapeutic approach for ALS and FTD.
C9orf72 基因非编码区的六核苷酸 GGGGCC 重复扩增是肌萎缩侧索硬化症(ALS)和额颞叶痴呆症(FTD)患者最常见的基因突变。非常规重复翻译产生的重复 RNA 和二肽重复蛋白被认为是与这些疾病相关的重要标志物。CRISPR-Cas13d 作为一种强大的 RNA 靶向工具,在有效靶向具有稳定二级结构的 RNA 方面一直面临挑战。在这里,我们报告了CRISPR-Cas13d可以优化为特异性靶向GGGGCC重复RNA。我们的研究结果表明,CRISPR-Cas13d 系统可以显著减少源自 GGGCC 重复 RNA 的多肽的翻译。这一功效已在多种细胞类型中得到验证,包括诱导多能干细胞、源自 C9orf72-ALS 患者的分化运动神经元以及 C9orf72 重复转基因小鼠。这些发现证明了CRISPR-Cas13d在靶向具有复杂高阶结构的RNA方面的应用,并为ALS和FTD提出了一种潜在的治疗方法。
{"title":"CRISPR-Cas13d targeting suppresses repeat-associated non-AUG translation of C9orf72 hexanucleotide repeat RNA.","authors":"Honghe Liu,Xiao-Feng Zhao,Yu-Ning Lu,Lindsey R Hayes,Jiou Wang","doi":"10.1172/jci179016","DOIUrl":"https://doi.org/10.1172/jci179016","url":null,"abstract":"A hexanucleotide GGGGCC repeat expansion in the non-coding region of C9orf72 gene is the most common genetic mutation identified in patients with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The resulting repeat RNA and dipeptide repeat proteins from non-conventional repeat translation have been recognized as important markers associated with the diseases. CRISPR-Cas13d, a powerful RNA targeting tool, has faced challenges in effectively targeting RNA with stable secondary structures. Here we report that CRISPR-Cas13d can be optimized to specifically target GGGGCC repeat RNA. Our results demonstrate that the CRISPR-Cas13d system can be harnessed to significantly diminish the translation of poly-dipeptides originating from the GGGGCC repeat RNA. This efficacy has been validated in various cell types, including induced pluripotent stem cells and differentiated motor neurons originating from C9orf72-ALS patients, as well as in C9orf72 repeat transgenic mice. These findings demonstrate the application of CRISPR-Cas13d in targeting RNA with intricate higher-order structures and suggest a potential therapeutic approach for ALS and FTD.","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142245511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
The Journal of Clinical Investigation
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1