Enhancing machine learning thermobarometry for clinopyroxene-bearing magmas

IF 4.2 2区 地球科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Geosciences Pub Date : 2024-08-31 DOI:10.1016/j.cageo.2024.105707
Mónica Ágreda-López , Valerio Parodi , Alessandro Musu , Corin Jorgenson , Alessandro Carfì , Fulvio Mastrogiovanni , Luca Caricchi , Diego Perugini , Maurizio Petrelli
{"title":"Enhancing machine learning thermobarometry for clinopyroxene-bearing magmas","authors":"Mónica Ágreda-López ,&nbsp;Valerio Parodi ,&nbsp;Alessandro Musu ,&nbsp;Corin Jorgenson ,&nbsp;Alessandro Carfì ,&nbsp;Fulvio Mastrogiovanni ,&nbsp;Luca Caricchi ,&nbsp;Diego Perugini ,&nbsp;Maurizio Petrelli","doi":"10.1016/j.cageo.2024.105707","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we proposed a general workflow that aims to enhance the ML-based geothermobarometer modelling. Our workflow focuses on three key areas. Firstly, we developed a robust pre-processing pipeline that addresses data imbalance, feature engineering, and data augmentation. Secondly, we assessed modelling errors using a Monte Carlo approach to quantify the impact of analytical uncertainties on the final pressure and temperature estimates. Thirdly, we implemented a robust strategy to validate and test the ML models to avoid over- and under-fitting issues while correcting biases associated with the application of specific ML models (i.e., tree-based ensembles).</p><p>To facilitate the use of our workflow, we have developed a web app (<span><span>https://bit.ly/ml-pt-web</span><svg><path></path></svg></span>) and a Python module (<span><span>https://bit.ly/ml-pt-py</span><svg><path></path></svg></span>). The robustness of this strategy has been tested on two calibrations: clinopyroxene (cpx) and clinopyroxene-liquid (cpx-liq). Our results show a significant reduction in errors compared to the baseline model, as well as good generalization ability on an independent external dataset. The Root Mean Squared Errors are 57 °C and 2.5 kbar for the cpx calibration, and 36 °C and 2.1 kbar for the cpx-liq calibration. Finally, our models show improved outcomes on the external dataset compared to existing ML and classical cpx and cpx-liq thermobarometers.</p></div>","PeriodicalId":55221,"journal":{"name":"Computers & Geosciences","volume":"193 ","pages":"Article 105707"},"PeriodicalIF":4.2000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0098300424001900/pdfft?md5=35a76aa189a72d9015dd976686c4e57f&pid=1-s2.0-S0098300424001900-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Geosciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098300424001900","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we proposed a general workflow that aims to enhance the ML-based geothermobarometer modelling. Our workflow focuses on three key areas. Firstly, we developed a robust pre-processing pipeline that addresses data imbalance, feature engineering, and data augmentation. Secondly, we assessed modelling errors using a Monte Carlo approach to quantify the impact of analytical uncertainties on the final pressure and temperature estimates. Thirdly, we implemented a robust strategy to validate and test the ML models to avoid over- and under-fitting issues while correcting biases associated with the application of specific ML models (i.e., tree-based ensembles).

To facilitate the use of our workflow, we have developed a web app (https://bit.ly/ml-pt-web) and a Python module (https://bit.ly/ml-pt-py). The robustness of this strategy has been tested on two calibrations: clinopyroxene (cpx) and clinopyroxene-liquid (cpx-liq). Our results show a significant reduction in errors compared to the baseline model, as well as good generalization ability on an independent external dataset. The Root Mean Squared Errors are 57 °C and 2.5 kbar for the cpx calibration, and 36 °C and 2.1 kbar for the cpx-liq calibration. Finally, our models show improved outcomes on the external dataset compared to existing ML and classical cpx and cpx-liq thermobarometers.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
增强含烊辉石岩浆的机器学习热压测量法
在本研究中,我们提出了一个通用工作流程,旨在增强基于 ML 的地温热压计建模。我们的工作流程侧重于三个关键领域。首先,我们开发了一个强大的预处理管道,以解决数据不平衡、特征工程和数据增强等问题。其次,我们使用蒙特卡罗方法评估建模误差,量化分析不确定性对最终压力和温度估计值的影响。第三,我们实施了一种稳健的策略来验证和测试 ML 模型,以避免过度拟合和拟合不足的问题,同时纠正与应用特定 ML 模型(即基于树的集合)相关的偏差。为了方便使用我们的工作流程,我们开发了一个网络应用程序 (https://bit.ly/ml-pt-web) 和一个 Python 模块 (https://bit.ly/ml-pt-py)。我们在两个定标中测试了这一策略的稳健性:clinopyroxene (cpx) 和 clinopyroxene-liquid (cpx-liq)。结果表明,与基线模型相比,误差明显减少,而且在独立的外部数据集上具有良好的泛化能力。cpx 标定的均方根误差为 57 ℃ 和 2.5 千巴,cpx-liq 标定的均方根误差为 36 ℃ 和 2.1 千巴。最后,与现有的 ML 和经典 cpx 和 cpx-liq 温度计相比,我们的模型在外部数据集上显示出更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Geosciences
Computers & Geosciences 地学-地球科学综合
CiteScore
9.30
自引率
6.80%
发文量
164
审稿时长
3.4 months
期刊介绍: Computers & Geosciences publishes high impact, original research at the interface between Computer Sciences and Geosciences. Publications should apply modern computer science paradigms, whether computational or informatics-based, to address problems in the geosciences.
期刊最新文献
Fire-Image-DenseNet (FIDN) for predicting wildfire burnt area using remote sensing data Efficient reservoir characterization using dimensionless ensemble smoother and multiple data assimilation in damaged multilayer systems Shear wave velocity prediction based on bayesian-optimized multi-head attention mechanism and CNN-BiLSTM Multivariate simulation using a locally varying coregionalization model Automatic variogram calculation and modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1