Chandan Paul , Somesh Roy , Johannes Sailer , Fabian Brännström , Mohamed Mohsen Ahmed , Arnaud Trouvé , Hadi Bordbar , Simo Hostikka , Randall McDermott
{"title":"Detailed radiation modeling of two flames relevant to fire simulation using Photon Monte Carlo — Line by Line radiation model","authors":"Chandan Paul , Somesh Roy , Johannes Sailer , Fabian Brännström , Mohamed Mohsen Ahmed , Arnaud Trouvé , Hadi Bordbar , Simo Hostikka , Randall McDermott","doi":"10.1016/j.jqsrt.2024.109177","DOIUrl":null,"url":null,"abstract":"<div><p>This work reports benchmark data sets for radiative heat transfer in two distinct fire configurations obtained from the Measurement and Computation of Fire Phenomena (MaCFP) working group database. The cases include a 19.2 kW non-sooting turbulent methanol pool fire and a 15 kW sooting ethylene flame (referred to as the FM burner). The base configurations were simulated with large eddy simulation (LES) approaches using two different codes, namely FireFOAM and Fire Dynamics Simulator, respectively. Multiple frozen snapshots from these LES runs were radiatively evaluated using a photon Monte Carlo radiation solver and a line-by-line spectral model. The results were presented at three levels: Firstly, the radiative fields, including radiative emission, reabsorption, and heat flux contours, were shown. Secondly, the global radiative contributions from molecular gas species, soot, and wall boundaries were compared. Thirdly, a detailed spectral analysis of radiative fields for different components within five distinct spectral bands was presented. In the case of the non-sooting methanol pool fire, the radiative emission from CO<sub>2</sub> predominates. However, for the radiation reaching the boundaries, both CO<sub>2</sub> and H<sub>2</sub>O contribute almost equally. Conversely, for the sooty FM burner configuration, radiative emission from soot, CO<sub>2</sub>, and H<sub>2</sub>O all contribute similarly. In terms of radiation reaching the boundary, soot is the primary contributor in FM Burner. In the methanol pool fire, the pool surface receives a comparable contribution from CO<sub>2</sub>, H<sub>2</sub>O, and burner rim radiation, whereas, for the FM burner, the burner inlet surface primarily receives radiation from soot.</p></div>","PeriodicalId":16935,"journal":{"name":"Journal of Quantitative Spectroscopy & Radiative Transfer","volume":"329 ","pages":"Article 109177"},"PeriodicalIF":2.3000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quantitative Spectroscopy & Radiative Transfer","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002240732400284X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
This work reports benchmark data sets for radiative heat transfer in two distinct fire configurations obtained from the Measurement and Computation of Fire Phenomena (MaCFP) working group database. The cases include a 19.2 kW non-sooting turbulent methanol pool fire and a 15 kW sooting ethylene flame (referred to as the FM burner). The base configurations were simulated with large eddy simulation (LES) approaches using two different codes, namely FireFOAM and Fire Dynamics Simulator, respectively. Multiple frozen snapshots from these LES runs were radiatively evaluated using a photon Monte Carlo radiation solver and a line-by-line spectral model. The results were presented at three levels: Firstly, the radiative fields, including radiative emission, reabsorption, and heat flux contours, were shown. Secondly, the global radiative contributions from molecular gas species, soot, and wall boundaries were compared. Thirdly, a detailed spectral analysis of radiative fields for different components within five distinct spectral bands was presented. In the case of the non-sooting methanol pool fire, the radiative emission from CO2 predominates. However, for the radiation reaching the boundaries, both CO2 and H2O contribute almost equally. Conversely, for the sooty FM burner configuration, radiative emission from soot, CO2, and H2O all contribute similarly. In terms of radiation reaching the boundary, soot is the primary contributor in FM Burner. In the methanol pool fire, the pool surface receives a comparable contribution from CO2, H2O, and burner rim radiation, whereas, for the FM burner, the burner inlet surface primarily receives radiation from soot.
期刊介绍:
Papers with the following subject areas are suitable for publication in the Journal of Quantitative Spectroscopy and Radiative Transfer:
- Theoretical and experimental aspects of the spectra of atoms, molecules, ions, and plasmas.
- Spectral lineshape studies including models and computational algorithms.
- Atmospheric spectroscopy.
- Theoretical and experimental aspects of light scattering.
- Application of light scattering in particle characterization and remote sensing.
- Application of light scattering in biological sciences and medicine.
- Radiative transfer in absorbing, emitting, and scattering media.
- Radiative transfer in stochastic media.