Xinnuo Lei , Yifan Jiang , Wanting Yu , Xiuyue Chen , Yiwen Qin , Naidong Wang , Yi Yang
{"title":"Intermolecular disulfide bond of PRRSV GP5 and M facilitates VLPs secretion and cell binding","authors":"Xinnuo Lei , Yifan Jiang , Wanting Yu , Xiuyue Chen , Yiwen Qin , Naidong Wang , Yi Yang","doi":"10.1016/j.vetmic.2024.110249","DOIUrl":null,"url":null,"abstract":"<div><p>Porcine reproductive and respiratory syndrome virus (PRRSV), the causative agent of porcine reproductive and respiratory syndrome (PRRS), continues to significantly impact on the global swine industry. GP5 and M are the primary structural proteins of PRRSV, playing crucial roles in the processes of virus attachment, entry, assembly and budding. The co-expression of GP5 and M can result in the formation of virus-like particles (VLPs). However, the underlying mechanisms remain incompletely understood. This study investigated the role of GP5-M interaction in VLPs secretion and cell binding. VLPs were generated by co-expressing GP5 and M via recombinant baculoviruses in Sf9 cells and confirmed by transmission electron microscopy. The secretion of VLPs was modulated by the expression levels of GP5 and M. Using the BirA technique, the GP5-M interaction was confirmed in Sf9 cells. Disruption of the N-terminally intermolecular disulfide bond between GP5 and M weakened, but did not completely abolish, the interaction between the proteins, leading to reduced VLPs secretion. Notably, the absence of this intermolecular disulfide bond resulted in the loss of VLPs’ ability to bind to MARC-145 cells. In summary, our findings reveal the critical function of the intermolecular disulfide bond in GP5-M interaction, which significantly contributes to VLPs secretion and cell binding, and suggest potential interaction sites between GP5 and M.</p></div>","PeriodicalId":23551,"journal":{"name":"Veterinary microbiology","volume":"298 ","pages":"Article 110249"},"PeriodicalIF":2.4000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary microbiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378113524002712","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV), the causative agent of porcine reproductive and respiratory syndrome (PRRS), continues to significantly impact on the global swine industry. GP5 and M are the primary structural proteins of PRRSV, playing crucial roles in the processes of virus attachment, entry, assembly and budding. The co-expression of GP5 and M can result in the formation of virus-like particles (VLPs). However, the underlying mechanisms remain incompletely understood. This study investigated the role of GP5-M interaction in VLPs secretion and cell binding. VLPs were generated by co-expressing GP5 and M via recombinant baculoviruses in Sf9 cells and confirmed by transmission electron microscopy. The secretion of VLPs was modulated by the expression levels of GP5 and M. Using the BirA technique, the GP5-M interaction was confirmed in Sf9 cells. Disruption of the N-terminally intermolecular disulfide bond between GP5 and M weakened, but did not completely abolish, the interaction between the proteins, leading to reduced VLPs secretion. Notably, the absence of this intermolecular disulfide bond resulted in the loss of VLPs’ ability to bind to MARC-145 cells. In summary, our findings reveal the critical function of the intermolecular disulfide bond in GP5-M interaction, which significantly contributes to VLPs secretion and cell binding, and suggest potential interaction sites between GP5 and M.
期刊介绍:
Veterinary Microbiology is concerned with microbial (bacterial, fungal, viral) diseases of domesticated vertebrate animals (livestock, companion animals, fur-bearing animals, game, poultry, fish) that supply food, other useful products or companionship. In addition, Microbial diseases of wild animals living in captivity, or as members of the feral fauna will also be considered if the infections are of interest because of their interrelation with humans (zoonoses) and/or domestic animals. Studies of antimicrobial resistance are also included, provided that the results represent a substantial advance in knowledge. Authors are strongly encouraged to read - prior to submission - the Editorials (''Scope or cope'' and ''Scope or cope II'') published previously in the journal. The Editors reserve the right to suggest submission to another journal for those papers which they feel would be more appropriate for consideration by that journal.
Original research papers of high quality and novelty on aspects of control, host response, molecular biology, pathogenesis, prevention, and treatment of microbial diseases of animals are published. Papers dealing primarily with immunology, epidemiology, molecular biology and antiviral or microbial agents will only be considered if they demonstrate a clear impact on a disease. Papers focusing solely on diagnostic techniques (such as another PCR protocol or ELISA) will not be published - focus should be on a microorganism and not on a particular technique. Papers only reporting microbial sequences, transcriptomics data, or proteomics data will not be considered unless the results represent a substantial advance in knowledge.
Drug trial papers will be considered if they have general application or significance. Papers on the identification of microorganisms will also be considered, but detailed taxonomic studies do not fall within the scope of the journal. Case reports will not be published, unless they have general application or contain novel aspects. Papers of geographically limited interest, which repeat what had been established elsewhere will not be considered. The readership of the journal is global.