Latent growth mixture models as latent variable multigroup factor models: Comment on McNeish et al. (2023).

IF 7.6 1区 心理学 Q1 PSYCHOLOGY, MULTIDISCIPLINARY Psychological methods Pub Date : 2024-09-12 DOI:10.1037/met0000693
Phillip K Wood,Wolfgang Wiedermann,Jules K Wood
{"title":"Latent growth mixture models as latent variable multigroup factor models: Comment on McNeish et al. (2023).","authors":"Phillip K Wood,Wolfgang Wiedermann,Jules K Wood","doi":"10.1037/met0000693","DOIUrl":null,"url":null,"abstract":"McNeish et al. argue for the general use of covariance pattern growth mixture models because these models do not involve the assumption of random effects, demonstrate high rates of convergence, and are most likely to identify the correct number of latent subgroups. We argue that the covariance pattern growth mixture model is a single random intercept model. It and other models considered in their article are special cases of a general model involving slope and intercept factors. We argue growth mixture models are multigroup invariance hypotheses based on unknown subgroups. Psychometric models in which trajectories are modeled using slope factor loadings which vary by latent subgroup are often conceptually preferable. Convergence rates for mixture models can be substantially improved by using a variance component start value taken from analyses with one fewer class and by specifying multifactor models in orthogonal form. No single latent growth model is appropriate across all research contexts and, instead, the most appropriate latent mixture model must be \"right-sized\" to the data under consideration. Reanalysis of a real-world longitudinal data set of posttraumatic stress disorder symptomatology reveals a three-group model involving exponential decline, further suggesting that the four-group \"cat's cradle\" pattern frequently reported is artefactual. (PsycInfo Database Record (c) 2024 APA, all rights reserved).","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":"41 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/met0000693","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

McNeish et al. argue for the general use of covariance pattern growth mixture models because these models do not involve the assumption of random effects, demonstrate high rates of convergence, and are most likely to identify the correct number of latent subgroups. We argue that the covariance pattern growth mixture model is a single random intercept model. It and other models considered in their article are special cases of a general model involving slope and intercept factors. We argue growth mixture models are multigroup invariance hypotheses based on unknown subgroups. Psychometric models in which trajectories are modeled using slope factor loadings which vary by latent subgroup are often conceptually preferable. Convergence rates for mixture models can be substantially improved by using a variance component start value taken from analyses with one fewer class and by specifying multifactor models in orthogonal form. No single latent growth model is appropriate across all research contexts and, instead, the most appropriate latent mixture model must be "right-sized" to the data under consideration. Reanalysis of a real-world longitudinal data set of posttraumatic stress disorder symptomatology reveals a three-group model involving exponential decline, further suggesting that the four-group "cat's cradle" pattern frequently reported is artefactual. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
作为潜在变量多组因子模型的潜在增长混合模型:对 McNeish 等人(2023 年)的评论。
McNeish 等人主张普遍使用协方差模式增长混合模型,因为这些模型不涉及随机效应假设,收敛率高,而且最有可能识别出正确数量的潜在子群。我们认为,协方差模式增长混合模型是一个单一随机截距模型。它和他们文章中考虑的其他模型都是涉及斜率和截距因子的一般模型的特例。我们认为,成长混合模型是基于未知子群的多群体不变性假设。在心理测量模型中,使用斜率因子载荷对轨迹进行建模,而斜率因子载荷因潜在子群体而异,这种模型在概念上往往更可取。混合模型的收敛率可以通过使用少一类分析中的方差分量起始值和以正交形式指定多 因子模型来大大提高。没有一种潜在增长模型适用于所有的研究环境,相反,最合适的潜在混合模型必须与所考虑的数据 "大小合适"。对创伤后应激障碍症状的真实世界纵向数据集进行重新分析,发现了一个涉及指数下降的三组模型,进一步表明经常报道的四组 "猫的摇篮 "模式是伪造的。(PsycInfo Database Record (c) 2024 APA, 版权所有)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Psychological methods
Psychological methods PSYCHOLOGY, MULTIDISCIPLINARY-
CiteScore
13.10
自引率
7.10%
发文量
159
期刊介绍: Psychological Methods is devoted to the development and dissemination of methods for collecting, analyzing, understanding, and interpreting psychological data. Its purpose is the dissemination of innovations in research design, measurement, methodology, and quantitative and qualitative analysis to the psychological community; its further purpose is to promote effective communication about related substantive and methodological issues. The audience is expected to be diverse and to include those who develop new procedures, those who are responsible for undergraduate and graduate training in design, measurement, and statistics, as well as those who employ those procedures in research.
期刊最新文献
Simulation studies for methodological research in psychology: A standardized template for planning, preregistration, and reporting. Item response theory-based continuous test norming. Comments on the measurement of effect sizes for indirect effects in Bayesian analysis of variance. Lagged multidimensional recurrence quantification analysis for determining leader-follower relationships within multidimensional time series. The potential of preregistration in psychology: Assessing preregistration producibility and preregistration-study consistency.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1