Reference-free quantitative mass spectrometry in the presence of nonlinear distortion caused by in situ chemical reactions among constituents†

IF 3.6 3区 化学 Q2 CHEMISTRY, ANALYTICAL Analyst Pub Date : 2024-09-13 DOI:10.1039/D4AN00961D
Yusuke Hibi
{"title":"Reference-free quantitative mass spectrometry in the presence of nonlinear distortion caused by in situ chemical reactions among constituents†","authors":"Yusuke Hibi","doi":"10.1039/D4AN00961D","DOIUrl":null,"url":null,"abstract":"<p >Materials performance is primarily influenced by chemical composition, making compositional analysis (CA) essential in materials science. Traditional quantitative mass spectrometry, which deconvolutes analyte spectra into reference spectra, struggles with reactive systems where spectral variations occur, such as peak shifts and new peak emergences. Additionally, obtaining reference spectra for all pure constituents is often impractical. To address these challenges, I propose nonlinear reference-free quantitative mass spectrometry (NL-RQMS). This method simultaneously determines composition, reference spectra, and nonlinear interaction effects directly from a spectral dataset of mixtures, eliminating the need for prior reference spectra. In a benchmark test on ternary reactive polymers of epoxy and amines, NL-RQMS inferred compositions with an error margin of just 3 wt%, significantly outperforming the 6 wt% error margin of linear RQMS. The inferred interaction terms clearly indicate <em>in situ</em> reactions between epoxy and amine moieties. This framework enables accurate compositional analysis without prior knowledge of the constituents, even in systems with interactive components, and holds significant potential for applications such as grading recycled plastics, where pristine materials, degradation compounds, and stabilizers interact complexly, causing nonlinear spectral distortions.</p>","PeriodicalId":63,"journal":{"name":"Analyst","volume":" 21","pages":" 5320-5328"},"PeriodicalIF":3.6000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analyst","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/an/d4an00961d","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Materials performance is primarily influenced by chemical composition, making compositional analysis (CA) essential in materials science. Traditional quantitative mass spectrometry, which deconvolutes analyte spectra into reference spectra, struggles with reactive systems where spectral variations occur, such as peak shifts and new peak emergences. Additionally, obtaining reference spectra for all pure constituents is often impractical. To address these challenges, I propose nonlinear reference-free quantitative mass spectrometry (NL-RQMS). This method simultaneously determines composition, reference spectra, and nonlinear interaction effects directly from a spectral dataset of mixtures, eliminating the need for prior reference spectra. In a benchmark test on ternary reactive polymers of epoxy and amines, NL-RQMS inferred compositions with an error margin of just 3 wt%, significantly outperforming the 6 wt% error margin of linear RQMS. The inferred interaction terms clearly indicate in situ reactions between epoxy and amine moieties. This framework enables accurate compositional analysis without prior knowledge of the constituents, even in systems with interactive components, and holds significant potential for applications such as grading recycled plastics, where pristine materials, degradation compounds, and stabilizers interact complexly, causing nonlinear spectral distortions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
成分间原位化学反应导致非线性失真情况下的无参照定量质谱法
材料的性能主要受化学成分的影响,因此成分分析(CA)在材料科学中至关重要。传统的定量质谱法将被分析物的光谱分解成参考光谱,但对于光谱会发生变化(如峰位移动和新峰出现)的反应性体系,这种方法就显得力不从心了。此外,获取所有纯成分的参考光谱往往不切实际。为了应对这些挑战,我提出了非线性无参比定量质谱法(RQMS)。这种方法可直接从混合物的光谱数据集中同时确定成分、参考光谱和非线性相互作用效应,无需事先获得参考光谱。在对环氧树脂和胺的三元反应聚合物进行的基准测试中,非线性 RQMS 推断出的成分误差率仅为 3 wt%,明显优于线性 RQMS 的 6 wt% 误差率。推断出的相互作用项清楚地表明了环氧和胺分子之间的原位反应。这种框架可以在不预先了解成分的情况下进行精确的成分分析,即使是在具有相互作用成分的系统中也是如此,它在分级再生塑料等应用中具有巨大的潜力,因为在这些应用中,原始材料、降解化合物和稳定剂会发生复杂的相互作用,从而导致非线性光谱失真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Analyst
Analyst 化学-分析化学
CiteScore
7.80
自引率
4.80%
发文量
636
审稿时长
1.9 months
期刊介绍: The home of premier fundamental discoveries, inventions and applications in the analytical and bioanalytical sciences
期刊最新文献
Recent advances in glutathione fluorescent probe based small organic molecule and their bioimaging Nanocarbon eco-hydrogel kit: on-site visual metal ion sensing and dye cleanup, advancing the circular economy in environmental remediation Length-band fluorescence-based paper analytical device for detecting dipicolinic acid via ofloxacin complexation with Cu²⁺ β-Cyclodextrin Modified Imidazole Probe Specific Recognition of Organic Acids Based on Nuclear Magnetic Resonance Development and validation of a one-step SMN assay for genetic testing in spinal muscular atrophy via MALDI-TOF MS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1