Distinguishing Bulk Redox from Near-Surface Degradation in Lithium Nickel Oxide Cathodes

IF 32.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Energy & Environmental Science Pub Date : 2024-09-13 DOI:10.1039/d4ee02398f
Lijin An, Ruomu Zhang, Pravin N. Didwal, Michael W. Fraser, Leanne A. H. Jones, Conor M. E. Phelan, Namrata Ramesh, Grant Harris, Robert S Weatherup, Jack E. N. Swallow, Peixi Cong, Andrey Poletayev, Erik Björklund, Christophe Sahle, Pilar Ferrer, David C. Grinter, Peter Bencok, Shusaku Hayama, Saiful Islam, Robert House, Peter D Nellist, Robert J. Green, Rebecca J Nicholls
{"title":"Distinguishing Bulk Redox from Near-Surface Degradation in Lithium Nickel Oxide Cathodes","authors":"Lijin An, Ruomu Zhang, Pravin N. Didwal, Michael W. Fraser, Leanne A. H. Jones, Conor M. E. Phelan, Namrata Ramesh, Grant Harris, Robert S Weatherup, Jack E. N. Swallow, Peixi Cong, Andrey Poletayev, Erik Björklund, Christophe Sahle, Pilar Ferrer, David C. Grinter, Peter Bencok, Shusaku Hayama, Saiful Islam, Robert House, Peter D Nellist, Robert J. Green, Rebecca J Nicholls","doi":"10.1039/d4ee02398f","DOIUrl":null,"url":null,"abstract":"Ni-rich layered oxide cathodes can deliver higher energy density batteries, but uncertainties remain over their charge compensation mechanisms and the degradation processes that limit cycle life. Trapped molecular O2 has been identified within LiNiO2 at high states of charge, as seen for Li-rich cathodes where excess capacity is associated with reversible O-redox. Here we show that bulk redox in LiNiO2 occurs by Ni-O rehybridization, lowering the electron density on O sites, but importantly without the involvement of molecular O2. Instead, trapped O2 is related to degradation at surfaces in contact with the electrolyte, and is accompanied by Ni reduction. O2 is removed on discharge, but excess Ni2+ persists forming a reduced surface layer, associated with impeded Li transport. This implicates the instability of delithiated LiNiO2 in contact with the electrolyte in surface degradation through O2 formation and Ni reduction, highlighting the importance of surface stabilisation strategies in suppressing LNO degradation.","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":null,"pages":null},"PeriodicalIF":32.4000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ee02398f","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ni-rich layered oxide cathodes can deliver higher energy density batteries, but uncertainties remain over their charge compensation mechanisms and the degradation processes that limit cycle life. Trapped molecular O2 has been identified within LiNiO2 at high states of charge, as seen for Li-rich cathodes where excess capacity is associated with reversible O-redox. Here we show that bulk redox in LiNiO2 occurs by Ni-O rehybridization, lowering the electron density on O sites, but importantly without the involvement of molecular O2. Instead, trapped O2 is related to degradation at surfaces in contact with the electrolyte, and is accompanied by Ni reduction. O2 is removed on discharge, but excess Ni2+ persists forming a reduced surface layer, associated with impeded Li transport. This implicates the instability of delithiated LiNiO2 in contact with the electrolyte in surface degradation through O2 formation and Ni reduction, highlighting the importance of surface stabilisation strategies in suppressing LNO degradation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
区分氧化镍锂阴极中的大量氧化还原与近表面降解
富镍层状氧化物阴极可提供能量密度更高的电池,但其电荷补偿机制和限制循环寿命的降解过程仍存在不确定性。在高电荷状态下,已在 LiNiO2 中发现了捕获的分子 O2,富锂阴极的过剩容量与可逆 O- 氧化还原有关。在这里,我们表明 LiNiO2 中的体氧化还原是通过 Ni-O 再杂化发生的,降低了 O 位点上的电子密度,但重要的是没有分子 O2 的参与。相反,捕获的 O2 与与电解质接触表面的降解有关,并伴随着镍的还原。放电时 O2 会被清除,但过量的 Ni2+ 会持续形成一个还原表面层,这与锂传输受阻有关。这表明,与电解质接触的脱钙镍钴酸锂不稳定,会通过形成 O2 和镍还原导致表面降解,突出了表面稳定策略在抑制 LNO 降解方面的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy & Environmental Science
Energy & Environmental Science 化学-工程:化工
CiteScore
50.50
自引率
2.20%
发文量
349
审稿时长
2.2 months
期刊介绍: Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences." Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).
期刊最新文献
Back cover Inside back cover Lithio-amphiphilic nanobilayer for high energy density anode-less all-solid-state batteries operating under low stack pressure Unprecedented Inorganic HTL-based MA-free Sn-Pb Perovskite Photovoltaics with an Efficiency over 23% Distinguishing Bulk Redox from Near-Surface Degradation in Lithium Nickel Oxide Cathodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1