Scalable and sustainable manufacturing of twin boundary-enhanced flexible Bi0.4Sb1.6Te3 films with high thermoelectric performance

IF 38.6 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Joule Pub Date : 2024-09-12 DOI:10.1016/j.joule.2024.08.009
Dasha Mao, Yi Zhou, Yong Yu, Yan Wang, Meng Han, Qiyu Meng, Yao Lu, Jianghe Feng, Minghua Kong, Hailong Yang, Quan Gan, Xiao Xu, Lin Xie, Ghim Wei Ho, Jiaqing He
{"title":"Scalable and sustainable manufacturing of twin boundary-enhanced flexible Bi0.4Sb1.6Te3 films with high thermoelectric performance","authors":"Dasha Mao, Yi Zhou, Yong Yu, Yan Wang, Meng Han, Qiyu Meng, Yao Lu, Jianghe Feng, Minghua Kong, Hailong Yang, Quan Gan, Xiao Xu, Lin Xie, Ghim Wei Ho, Jiaqing He","doi":"10.1016/j.joule.2024.08.009","DOIUrl":null,"url":null,"abstract":"<p>Flexible thermoelectrics (TEs) have been used in self-powered electronics and heat harvesters due to their matchable heat flux values across curved/non-flat interfaces, aiming to achieve a balance between thermoelectricity, flexibility, and scalability. In this work, we constructed Bi<sub>0.4</sub>Sb<sub>1.6</sub>Te<sub>3</sub> thin films with a high density of annealing twin boundaries to simultaneously modulate the carrier concentration, Seebeck coefficient, mobility, and local strain propagation. Specifically, the thin films achieved an ultrahigh power factor reaching 45 μW cm<sup>−1</sup> K<sup>−2</sup> and demonstrated modest electrical conductivity variations (&lt;10%) after 1,000 bending cycles at room temperature. Furthermore, we presented a large-area, cost-effective thin film of up to 100 cm<sup>2</sup> and a flexible generator with an impressive maximum power density of 69 W m<sup>−2</sup> at a temperature difference of 56.8 K. This flexible TE could not only serve as a framework for comprehending the structure-property correlation in inorganic TE thin films but also provide feasibility for wearable electronics and sustainable heat harvesting.</p>","PeriodicalId":343,"journal":{"name":"Joule","volume":null,"pages":null},"PeriodicalIF":38.6000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.joule.2024.08.009","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Flexible thermoelectrics (TEs) have been used in self-powered electronics and heat harvesters due to their matchable heat flux values across curved/non-flat interfaces, aiming to achieve a balance between thermoelectricity, flexibility, and scalability. In this work, we constructed Bi0.4Sb1.6Te3 thin films with a high density of annealing twin boundaries to simultaneously modulate the carrier concentration, Seebeck coefficient, mobility, and local strain propagation. Specifically, the thin films achieved an ultrahigh power factor reaching 45 μW cm−1 K−2 and demonstrated modest electrical conductivity variations (<10%) after 1,000 bending cycles at room temperature. Furthermore, we presented a large-area, cost-effective thin film of up to 100 cm2 and a flexible generator with an impressive maximum power density of 69 W m−2 at a temperature difference of 56.8 K. This flexible TE could not only serve as a framework for comprehending the structure-property correlation in inorganic TE thin films but also provide feasibility for wearable electronics and sustainable heat harvesting.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可扩展、可持续地制造具有高热电性能的双边界增强柔性 Bi0.4Sb1.6Te3 薄膜
柔性热电(TE)因其在弯曲/非平面界面上可匹配的热通量值而被用于自供电电子设备和热收集器,旨在实现热电、柔性和可扩展性之间的平衡。在这项工作中,我们构建了具有高密度退火孪晶边界的 Bi0.4Sb1.6Te3 薄膜,以同时调节载流子浓度、塞贝克系数、迁移率和局部应变传播。具体来说,这些薄膜实现了超高功率因数,达到 45 μW cm-1 K-2,并在室温下弯曲 1000 次后显示出适度的电导率变化(<10%)。此外,我们还展示了一种面积达 100 cm2 的大面积、高性价比薄膜和一种柔性发电机,在 56.8 K 的温差条件下,其最大功率密度达到了 69 W m-2。这种柔性 TE 不仅可以作为理解无机 TE 薄膜结构-性能相关性的框架,还可以为可穿戴电子设备和可持续热收集提供可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Joule
Joule Energy-General Energy
CiteScore
53.10
自引率
2.00%
发文量
198
期刊介绍: Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.
期刊最新文献
Clean energy demand must secure sustainable nickel supply Electro-biodiesel empowered by co-design of microorganism and electrocatalysis Distributions and evolution of trap states in non-fullerene organic solar cells Electro-controlled distribution of reducing equivalents to boost isobutanol biosynthesis in microbial electro-fermentation of S. oneidensis Metal-ligand redox in layered oxide cathodes for Li-ion batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1