{"title":"Thin accretion disk images of rotating hairy Horndeski black holes","authors":"Mohaddese Heydari-Fard, Malihe Heydari-Fard, Nematollah Riazi","doi":"10.1007/s10509-024-04359-7","DOIUrl":null,"url":null,"abstract":"<div><p>By considering the steady-state Novikov-Thorne model, we study thin accretion disk processes for rotating hairy black holes in the framework of the Horndeski gravity. We obtain the electromagnetic properties of accretion disk around such black holes and investigate the effects of the hair parameter <span>\\(h\\)</span> on them. We find that by decreasing the hair parameter from the Kerr limit, <span>\\(h\\rightarrow 0\\)</span>, the radius of the innermost stable circular orbit decreases which makes thin accretion disks around rotating hairy black holes in Horndeski gravity more efficient than that for the Kerr black hole in general relativity. Furthermore, using the numerical ray-tracing method, we plot thin accretion disk images around these black holes and investigate the effects of hair parameter on the central shadow area of accretion disk.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysics and Space Science","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10509-024-04359-7","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
By considering the steady-state Novikov-Thorne model, we study thin accretion disk processes for rotating hairy black holes in the framework of the Horndeski gravity. We obtain the electromagnetic properties of accretion disk around such black holes and investigate the effects of the hair parameter \(h\) on them. We find that by decreasing the hair parameter from the Kerr limit, \(h\rightarrow 0\), the radius of the innermost stable circular orbit decreases which makes thin accretion disks around rotating hairy black holes in Horndeski gravity more efficient than that for the Kerr black hole in general relativity. Furthermore, using the numerical ray-tracing method, we plot thin accretion disk images around these black holes and investigate the effects of hair parameter on the central shadow area of accretion disk.
期刊介绍:
Astrophysics and Space Science publishes original contributions and invited reviews covering the entire range of astronomy, astrophysics, astrophysical cosmology, planetary and space science and the astrophysical aspects of astrobiology. This includes both observational and theoretical research, the techniques of astronomical instrumentation and data analysis and astronomical space instrumentation. We particularly welcome papers in the general fields of high-energy astrophysics, astrophysical and astrochemical studies of the interstellar medium including star formation, planetary astrophysics, the formation and evolution of galaxies and the evolution of large scale structure in the Universe. Papers in mathematical physics or in general relativity which do not establish clear astrophysical applications will no longer be considered.
The journal also publishes topically selected special issues in research fields of particular scientific interest. These consist of both invited reviews and original research papers. Conference proceedings will not be considered. All papers published in the journal are subject to thorough and strict peer-reviewing.
Astrophysics and Space Science features short publication times after acceptance and colour printing free of charge.