{"title":"Higher-Order Cellular Automata Generated Symmetry-Protected Topological Phases and Detection Through Multi Point Strange Correlators","authors":"Jie-Yu Zhang, Meng-Yuan Li, Peng Ye","doi":"10.1103/prxquantum.5.030342","DOIUrl":null,"url":null,"abstract":"In computer and system sciences, higher-order cellular automata (HOCA) are a type of cellular automata that evolve over multiple time steps and generate complex patterns, which have various applications, such as secret-sharing schemes, data compression, and image encryption. In this paper, we introduce HOCA to quantum many-body physics and construct a series of symmetry-protected topological (SPT) phases of matter, in which symmetries are supported on a great variety of subsystems embbeded in the SPT bulk. We call these phases HOCA-generated SPT (HGSPT) phases. Specifically, we show that HOCA can generate not only well-understood SPTs with symmetries supported on either regular (e.g., linelike subsystems in the two-dimensional cluster model) or fractal subsystems, but also a large class of unexplored SPTs with symmetries supported on more choices of subsystems. One example is <i>mixed-subsystem SPT</i> that has either fractal and linelike subsystem symmetries simultaneously or two distinct types of fractal symmetries simultaneously. Another example is <i>chaotic-subsystem SPT</i> in which chaotic-looking symmetries are significantly different from and thus cannot reduce to fractal or regular subsystem symmetries. We also introduce a new notation system to characterize HGSPTs. We prove that all possible subsystem symmetries in a square lattice can be locally simulated by an HOCA-generated symmetry. As the usual two-point strange correlators are trivial in most HGSPTs, we find that the nontrivial SPT orders can be detected by what we call <i>multi point strange correlators</i>. We propose a universal procedure to design the spatial configuration of the multi point strange correlators for a given HGSPT phase. Specifically, we find deep connections between multi point strange correlators and the spurious topological entanglement entropy (STEE), both exhibiting long-range behavior in a short-range entangled state. Our HOCA approaches and multi point strange correlators pave the way for a unified paradigm to design, classify, and detect phases of matter with symmetries supported on a great variety of subsystems, and also provide potential useful perspective in surpassing the computational irreducibility of HOCA in a quantum mechanical way.","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRX Quantum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/prxquantum.5.030342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In computer and system sciences, higher-order cellular automata (HOCA) are a type of cellular automata that evolve over multiple time steps and generate complex patterns, which have various applications, such as secret-sharing schemes, data compression, and image encryption. In this paper, we introduce HOCA to quantum many-body physics and construct a series of symmetry-protected topological (SPT) phases of matter, in which symmetries are supported on a great variety of subsystems embbeded in the SPT bulk. We call these phases HOCA-generated SPT (HGSPT) phases. Specifically, we show that HOCA can generate not only well-understood SPTs with symmetries supported on either regular (e.g., linelike subsystems in the two-dimensional cluster model) or fractal subsystems, but also a large class of unexplored SPTs with symmetries supported on more choices of subsystems. One example is mixed-subsystem SPT that has either fractal and linelike subsystem symmetries simultaneously or two distinct types of fractal symmetries simultaneously. Another example is chaotic-subsystem SPT in which chaotic-looking symmetries are significantly different from and thus cannot reduce to fractal or regular subsystem symmetries. We also introduce a new notation system to characterize HGSPTs. We prove that all possible subsystem symmetries in a square lattice can be locally simulated by an HOCA-generated symmetry. As the usual two-point strange correlators are trivial in most HGSPTs, we find that the nontrivial SPT orders can be detected by what we call multi point strange correlators. We propose a universal procedure to design the spatial configuration of the multi point strange correlators for a given HGSPT phase. Specifically, we find deep connections between multi point strange correlators and the spurious topological entanglement entropy (STEE), both exhibiting long-range behavior in a short-range entangled state. Our HOCA approaches and multi point strange correlators pave the way for a unified paradigm to design, classify, and detect phases of matter with symmetries supported on a great variety of subsystems, and also provide potential useful perspective in surpassing the computational irreducibility of HOCA in a quantum mechanical way.