Coherent Acoustic Control of Defect Orbital States in the Strong-Driving Limit

B.A. McCullian, V. Sharma, H.Y. Chen, J.C. Crossman, E.J. Mueller, G.D. Fuchs
{"title":"Coherent Acoustic Control of Defect Orbital States in the Strong-Driving Limit","authors":"B.A. McCullian, V. Sharma, H.Y. Chen, J.C. Crossman, E.J. Mueller, G.D. Fuchs","doi":"10.1103/prxquantum.5.030336","DOIUrl":null,"url":null,"abstract":"We use a bulk acoustic wave resonator to demonstrate coherent control of the excited orbital states in a diamond nitrogen-vacancy (<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mtext>N</mtext></math><math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"normal\">V</mi></mrow></math>) center at cryogenic temperature. Coherent quantum control is an essential tool for understanding and mitigating decoherence. Moreover, characterizing and controlling orbital states is a central challenge for quantum networking, where optical coherence is tied to orbital coherence. We study resonant multiphonon orbital Rabi oscillations in both the frequency and time domain, extracting the strength of the orbital-phonon interactions and the coherence of the acoustically driven orbital states. We reach the strong-driving limit, where the physics is dominated by the coupling induced by the acoustic waves. We find agreement between our measurements, quantum master-equation simulations, and a Landau-Zener transition model in the strong-driving limit. Using perturbation theory, we derive an expression for the orbital Rabi frequency versus the acoustic drive strength that is nonperturbative in the drive strength and agrees well with our measurements for all acoustic powers. Motivated by continuous-wave spin-resonance-based decoherence protection schemes, we model the orbital decoherence and find good agreement between our model and our measured few-to-several-nanoseconds orbital decoherence times. We discuss the outlook for orbital decoherence protection.","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRX Quantum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/prxquantum.5.030336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We use a bulk acoustic wave resonator to demonstrate coherent control of the excited orbital states in a diamond nitrogen-vacancy (NV) center at cryogenic temperature. Coherent quantum control is an essential tool for understanding and mitigating decoherence. Moreover, characterizing and controlling orbital states is a central challenge for quantum networking, where optical coherence is tied to orbital coherence. We study resonant multiphonon orbital Rabi oscillations in both the frequency and time domain, extracting the strength of the orbital-phonon interactions and the coherence of the acoustically driven orbital states. We reach the strong-driving limit, where the physics is dominated by the coupling induced by the acoustic waves. We find agreement between our measurements, quantum master-equation simulations, and a Landau-Zener transition model in the strong-driving limit. Using perturbation theory, we derive an expression for the orbital Rabi frequency versus the acoustic drive strength that is nonperturbative in the drive strength and agrees well with our measurements for all acoustic powers. Motivated by continuous-wave spin-resonance-based decoherence protection schemes, we model the orbital decoherence and find good agreement between our model and our measured few-to-several-nanoseconds orbital decoherence times. We discuss the outlook for orbital decoherence protection.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
强驱动极限下缺陷轨道态的相干声学控制
我们利用体声波谐振器演示了在低温条件下对金刚石氮空位(NV)中心激发轨道态的相干控制。相干量子控制是理解和缓解退相干的重要工具。此外,表征和控制轨道态也是量子网络面临的核心挑战,因为光学相干性与轨道相干性息息相关。我们在频域和时域研究了共振多声子轨道拉比振荡,提取了轨道-声子相互作用的强度和声驱动轨道态的相干性。我们达到了强驱动极限,在这一极限下,物理学被声波诱导的耦合所主导。我们发现测量结果、量子主方程模拟和强驱动极限下的朗道-齐纳转换模型之间存在一致性。利用扰动理论,我们推导出了轨道拉比频率与声波驱动强度的关系表达式,该表达式在驱动强度下是非扰动的,并且与我们对所有声波功率的测量结果都十分吻合。受基于连续波自旋共振的退相干保护方案的启发,我们建立了轨道退相干模型,并发现我们的模型与我们测量到的几纳秒到几纳秒的轨道退相干时间非常吻合。我们讨论了轨道退相干保护的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reducing Leakage of Single-Qubit Gates for Superconducting Quantum Processors Using Analytical Control Pulse Envelopes Quasiprobabilities in Quantum Thermodynamics and Many-Body Systems Improving Threshold for Fault-Tolerant Color-Code Quantum Computing by Flagged Weight Optimization Progress in Superconductor-Semiconductor Topological Josephson Junctions Mitigating Scattering in a Quantum System Using Only an Integrating Sphere
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1