Numerical Simulation and Preforming Parameters Optimization of Carbon-Kevlar Hybrid Woven Reinforcement Materials Based on Genetic Algorithm

IF 2.3 4区 材料科学 Q3 MATERIALS SCIENCE, COMPOSITES Applied Composite Materials Pub Date : 2024-09-02 DOI:10.1007/s10443-024-10263-8
Sasa Gao, Zuwang Yu, Zhengtao Qu, Zeyu Wang, Hua Xin
{"title":"Numerical Simulation and Preforming Parameters Optimization of Carbon-Kevlar Hybrid Woven Reinforcement Materials Based on Genetic Algorithm","authors":"Sasa Gao, Zuwang Yu, Zhengtao Qu, Zeyu Wang, Hua Xin","doi":"10.1007/s10443-024-10263-8","DOIUrl":null,"url":null,"abstract":"<p>Carbon-Kevlar hybrid woven reinforcement materials have high specific strength and modulus, excellent fatigue resistance, which are widely used in aerospace applications. Due to its special mechanical properties by hybridization, the forming quality is affected by various factors such as reinforcement properties and process parameters. In order to improve the forming quality of Carbon-Kevlar hybrid woven reinforcement and reduce the forming defects, this paper proposes a new optimization method combined with genetic algorithm. Taking the maximum shear angle of the preform as the optimization objective, a genetic algorithm is used to optimize the load and size of the tetrahedral structure blank holder. The results indicate that the peak shear angle decreased from 52.14° to 43.90°, while the optimal forces on the five parts of the blank holder are <i>RF</i><sub><i>1</i></sub> = 20 N, <i>RF</i><sub><i>2</i></sub> = 26 N, <i>RF</i><sub><i>3</i></sub> = 45 N, <i>RF</i><sub><i>4</i></sub> = 14 N, <i>RF</i><sub><i>5</i></sub> = 45 N, respectively, and the optimal gaps between the blank holder parts is <i>BW</i><sub><i>1</i></sub> = 4 mm, <i>BW</i><sub><i>2</i></sub> = 22 mm. Then, potential wrinkling areas were predicted by the in-plane negative strain. It was found that the minimum in-plane negative strain of the sample in the two main fiber directions was effectively controlled, and the negative strain distribution in the useful areas was more uniform, thereby reducing the potential wrinkling areas, indicating the effectiveness of the optimization method.</p>","PeriodicalId":468,"journal":{"name":"Applied Composite Materials","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s10443-024-10263-8","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon-Kevlar hybrid woven reinforcement materials have high specific strength and modulus, excellent fatigue resistance, which are widely used in aerospace applications. Due to its special mechanical properties by hybridization, the forming quality is affected by various factors such as reinforcement properties and process parameters. In order to improve the forming quality of Carbon-Kevlar hybrid woven reinforcement and reduce the forming defects, this paper proposes a new optimization method combined with genetic algorithm. Taking the maximum shear angle of the preform as the optimization objective, a genetic algorithm is used to optimize the load and size of the tetrahedral structure blank holder. The results indicate that the peak shear angle decreased from 52.14° to 43.90°, while the optimal forces on the five parts of the blank holder are RF1 = 20 N, RF2 = 26 N, RF3 = 45 N, RF4 = 14 N, RF5 = 45 N, respectively, and the optimal gaps between the blank holder parts is BW1 = 4 mm, BW2 = 22 mm. Then, potential wrinkling areas were predicted by the in-plane negative strain. It was found that the minimum in-plane negative strain of the sample in the two main fiber directions was effectively controlled, and the negative strain distribution in the useful areas was more uniform, thereby reducing the potential wrinkling areas, indicating the effectiveness of the optimization method.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于遗传算法的碳-凯芙拉混合编织加固材料数值模拟与预成型参数优化
碳-凯夫拉混合编织加固材料具有较高的比强度和比模量,以及优异的抗疲劳性能,被广泛应用于航空航天领域。由于其杂化后的特殊力学性能,成型质量受到加固性能和工艺参数等多种因素的影响。为了提高碳-凯芙拉混合编织加固材料的成形质量,减少成形缺陷,本文提出了一种结合遗传算法的新优化方法。以预型件的最大剪切角为优化目标,采用遗传算法优化四面体结构坯料支架的载荷和尺寸。结果表明,峰值剪切角从 52.14°减小到 43.90°,坯料支架五个部分的最佳受力分别为 RF1 = 20 N、RF2 = 26 N、RF3 = 45 N、RF4 = 14 N、RF5 = 45 N,坯料支架各部分之间的最佳间隙为 BW1 = 4 mm、BW2 = 22 mm。然后,通过面内负应变预测潜在的起皱区域。结果发现,试样在两个主要纤维方向上的最小面内负应变得到了有效控制,有用区域的负应变分布更加均匀,从而减少了潜在的起皱区域,说明优化方法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Composite Materials
Applied Composite Materials 工程技术-材料科学:复合
CiteScore
4.20
自引率
4.30%
发文量
81
审稿时长
1.6 months
期刊介绍: Applied Composite Materials is an international journal dedicated to the publication of original full-length papers, review articles and short communications of the highest quality that advance the development and application of engineering composite materials. Its articles identify problems that limit the performance and reliability of the composite material and composite part; and propose solutions that lead to innovation in design and the successful exploitation and commercialization of composite materials across the widest spectrum of engineering uses. The main focus is on the quantitative descriptions of material systems and processing routes. Coverage includes management of time-dependent changes in microscopic and macroscopic structure and its exploitation from the material''s conception through to its eventual obsolescence.
期刊最新文献
A Coupled Elastoplastic-Damage Analytical Model for 3D Resin-Matrix Woven Composites Effect of Temperature on the Mixed mode I/II Translaminar Fracture of Epoxy Composites Reinforced with Cotton Fibers Experimental Characterisation of Cure-Dependent Spring-Back Behaviour of Metal-Composite Laminates in a Hot-Pressing Process Cutting Force Model of SiCp/Al Composites in Ultrasonic Elliptical Vibration Assisted Cutting with Negative Rake Angle Experimental and Simulation Analysis of the Mechanical Deterioration Mechanisms in SiCp/A356 Composites Under Thermal Cycling Load
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1