{"title":"Preparation and reliability performance evaluation of electro-spun strain sensing membrane","authors":"Parian Mohamadi, Shahood uz Zaman, Elham Mohsenzadeh, Cedric Cochrane, Vladan Koncar","doi":"10.1088/1361-665x/ad70e2","DOIUrl":null,"url":null,"abstract":"The development of textile-based strain sensors signifies a new era for diverse e-textile applications spanning various fields, including health monitoring and sensing equipment. Over decades, the sensor field has experienced significant advancements, incorporating enhancements in sensing accuracy, resolution, measurement range, and robustness, among other aspects. Our article initially focuses on the creation of textile-based strain membrane sensors customized for a range of industrial applications, such as air filter clogging detection and airflow analysis. In the subsequent part of the study, the reliability and washability performance of the sensing membrane, without mechanical damage, were investigated. To achieve this, thermoplastic polyurethane nanofibers were utilized to fabricate a textile sensory membrane. Subsequently, this membrane air transparent (low-pressure drop) and highly resilient was used as a substrate to print strain gauge tracks using carbon conductive ink, with the aid of a flexible printed circuit board printer. The resulting samples underwent comprehensive evaluation for reliability and washability. Prototype membranes were subjected to twelve wash cycles in a top-loading washing machine to assess washing reliability. Both the mechanical and electromechanical properties of the strain membrane sensors were examined both before and after the washing process. The gauge factor of the straight line decreased from 18.14 (region I) and 86.03 (region II) to 20.22 after washing. This value reduced from 0.88 and 4.20 to 0.33, and from 13 and 2.77 to 3.29 and 0.81 for the big zigzag and small zigzag, respectively. Similarly, electrical resistance change after 12 wash cycles was negligible with maximum change 1.12. These results indicate that sensors maintain their functionality even after exposure to multiple washing cycles. In conclusion, it can be inferred that textile-based sensory membranes are well-suited for industrial applications aiming at the measurement of low and high-speed airflows subject to rigorous washing and other potential mechanical stresses.","PeriodicalId":21656,"journal":{"name":"Smart Materials and Structures","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-665x/ad70e2","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
The development of textile-based strain sensors signifies a new era for diverse e-textile applications spanning various fields, including health monitoring and sensing equipment. Over decades, the sensor field has experienced significant advancements, incorporating enhancements in sensing accuracy, resolution, measurement range, and robustness, among other aspects. Our article initially focuses on the creation of textile-based strain membrane sensors customized for a range of industrial applications, such as air filter clogging detection and airflow analysis. In the subsequent part of the study, the reliability and washability performance of the sensing membrane, without mechanical damage, were investigated. To achieve this, thermoplastic polyurethane nanofibers were utilized to fabricate a textile sensory membrane. Subsequently, this membrane air transparent (low-pressure drop) and highly resilient was used as a substrate to print strain gauge tracks using carbon conductive ink, with the aid of a flexible printed circuit board printer. The resulting samples underwent comprehensive evaluation for reliability and washability. Prototype membranes were subjected to twelve wash cycles in a top-loading washing machine to assess washing reliability. Both the mechanical and electromechanical properties of the strain membrane sensors were examined both before and after the washing process. The gauge factor of the straight line decreased from 18.14 (region I) and 86.03 (region II) to 20.22 after washing. This value reduced from 0.88 and 4.20 to 0.33, and from 13 and 2.77 to 3.29 and 0.81 for the big zigzag and small zigzag, respectively. Similarly, electrical resistance change after 12 wash cycles was negligible with maximum change 1.12. These results indicate that sensors maintain their functionality even after exposure to multiple washing cycles. In conclusion, it can be inferred that textile-based sensory membranes are well-suited for industrial applications aiming at the measurement of low and high-speed airflows subject to rigorous washing and other potential mechanical stresses.
期刊介绍:
Smart Materials and Structures (SMS) is a multi-disciplinary engineering journal that explores the creation and utilization of novel forms of transduction. It is a leading journal in the area of smart materials and structures, publishing the most important results from different regions of the world, largely from Asia, Europe and North America. The results may be as disparate as the development of new materials and active composite systems, derived using theoretical predictions to complex structural systems, which generate new capabilities by incorporating enabling new smart material transducers. The theoretical predictions are usually accompanied with experimental verification, characterizing the performance of new structures and devices. These systems are examined from the nanoscale to the macroscopic. SMS has a Board of Associate Editors who are specialists in a multitude of areas, ensuring that reviews are fast, fair and performed by experts in all sub-disciplines of smart materials, systems and structures.
A smart material is defined as any material that is capable of being controlled such that its response and properties change under a stimulus. A smart structure or system is capable of reacting to stimuli or the environment in a prescribed manner. SMS is committed to understanding, expanding and dissemination of knowledge in this subject matter.