Weimian Zhou, Chanchan Xu, Guisong Chen, Xiaojie Wang
{"title":"A soft bioinspired suction cup with tunable adhesion force using shape memory alloy","authors":"Weimian Zhou, Chanchan Xu, Guisong Chen, Xiaojie Wang","doi":"10.1088/1361-665x/ad6cbb","DOIUrl":null,"url":null,"abstract":"Suction cups has been widely utilized to grasp objects, but they typically encounter challenges with sealing failure and non-adjustable adhesion force. In this study, a bioinspired suction cup integrated with an shape memory alloy actuated module was proposed to solve these problems. The actuating performance under different input current was firstly investigated to ensure the effectiveness of the module. Then, inspired by the surface structures of the tree frog’s toe pad, the synthetic bioinspired suction cups with hexagonal microstructures at the rims were designed. The regular cup with soft and smooth rim was also fabricated for comparison study. Furthermore, the adhesion performance and surface adaptability of different two cups were studied in both dry and water conditions on substrates with various roughness levels. The results indicated that the proposed active bioinspired suction cup exhibited higher pull-off strength and better sealing on less rough substrates. The proposed bioinspired suction cup possessed the advantages of compactness and lightweight, thus demonstrating potential for integration into arrayed suction grippers.","PeriodicalId":21656,"journal":{"name":"Smart Materials and Structures","volume":"32 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-665x/ad6cbb","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Suction cups has been widely utilized to grasp objects, but they typically encounter challenges with sealing failure and non-adjustable adhesion force. In this study, a bioinspired suction cup integrated with an shape memory alloy actuated module was proposed to solve these problems. The actuating performance under different input current was firstly investigated to ensure the effectiveness of the module. Then, inspired by the surface structures of the tree frog’s toe pad, the synthetic bioinspired suction cups with hexagonal microstructures at the rims were designed. The regular cup with soft and smooth rim was also fabricated for comparison study. Furthermore, the adhesion performance and surface adaptability of different two cups were studied in both dry and water conditions on substrates with various roughness levels. The results indicated that the proposed active bioinspired suction cup exhibited higher pull-off strength and better sealing on less rough substrates. The proposed bioinspired suction cup possessed the advantages of compactness and lightweight, thus demonstrating potential for integration into arrayed suction grippers.
期刊介绍:
Smart Materials and Structures (SMS) is a multi-disciplinary engineering journal that explores the creation and utilization of novel forms of transduction. It is a leading journal in the area of smart materials and structures, publishing the most important results from different regions of the world, largely from Asia, Europe and North America. The results may be as disparate as the development of new materials and active composite systems, derived using theoretical predictions to complex structural systems, which generate new capabilities by incorporating enabling new smart material transducers. The theoretical predictions are usually accompanied with experimental verification, characterizing the performance of new structures and devices. These systems are examined from the nanoscale to the macroscopic. SMS has a Board of Associate Editors who are specialists in a multitude of areas, ensuring that reviews are fast, fair and performed by experts in all sub-disciplines of smart materials, systems and structures.
A smart material is defined as any material that is capable of being controlled such that its response and properties change under a stimulus. A smart structure or system is capable of reacting to stimuli or the environment in a prescribed manner. SMS is committed to understanding, expanding and dissemination of knowledge in this subject matter.