Dielectric Response, Non-Ohmic Behaviors and Humidity-sensing Characteristics: Tin Doping in Sodium Yttrium Copper Titanate Ceramics

IF 5.1 2区 材料科学 Q1 MATERIALS SCIENCE, CERAMICS Ceramics International Pub Date : 2024-09-13 DOI:10.1016/j.ceramint.2024.09.115
Jutapol Jumpatam, Kaniknun Sreejivungsa, Choojit Sarapak, Poemyot Wongbua-Ngam, Bundit Putasaeng, Prasit Thongbai
{"title":"Dielectric Response, Non-Ohmic Behaviors and Humidity-sensing Characteristics: Tin Doping in Sodium Yttrium Copper Titanate Ceramics","authors":"Jutapol Jumpatam, Kaniknun Sreejivungsa, Choojit Sarapak, Poemyot Wongbua-Ngam, Bundit Putasaeng, Prasit Thongbai","doi":"10.1016/j.ceramint.2024.09.115","DOIUrl":null,"url":null,"abstract":"<p>The impact of tin (Sn<sup>4+</sup>) doping on sodium yttrium copper titanate (Na<sub>0.5</sub>Y<sub>0.5</sub>Cu<sub>3</sub>Ti<sub>4</sub>O<sub>12</sub>) ceramics, prepared using a conventional mixed-oxide route, was thoroughly investigated in terms of microstructure, dielectric properties, electrical response, non-linear behaviors, and humidity-sensing characteristics. All sintered ceramics showed a dense micro-structure and a pure Na<sub>0.5</sub>Y<sub>0.5</sub>Cu<sub>3</sub>Ti<sub>4</sub>O<sub>12</sub> phase without any secondary phases. The doped Na<sub>0.5</sub>Y<sub>0.5</sub>Cu<sub>3</sub>Ti<sub>4−x</sub>Sn<sub>x</sub>O<sub>12</sub> ceramics, with x = 0.05, demonstrated excellent dielectric properties, including a low dielectric loss tangent (∼0.032) and a giant dielectric permittivity (∼1.8 × 10<sup>4</sup>) across a wide temperature range. Sn<sup>4+</sup> doping improved the non-linear behaviors at 25°C in Na<sub>0.5</sub>Y<sub>0.5</sub>Cu<sub>3</sub>Ti<sub>4</sub>O<sub>12</sub>, with a reduced dielectric loss tangent corresponding to an enhanced grain boundary (GB) response. The colossal dielectric response is attributed to the internal barrier layer capacitor model, which relates to the Schottky barrier height (Φ<sub>B</sub>) at the GBs. Notably, the Φ<sub>B</sub> values for the Na<sub>0.5</sub>Y<sub>0.5</sub>Cu<sub>3</sub>Ti<sub>4</sub>O<sub>12</sub> ceramic increased with Sn<sup>4+</sup> ion doping. Additionally, an in-depth study of the humidity-sensing properties of the Sn<sup>4+</sup>-doped Na<sub>0.5</sub>Y<sub>0.5</sub>Cu<sub>3</sub>Ti<sub>4</sub>O<sub>12</sub> material revealed that the capacitance at 1 kHz increased with increasing relative humidity levels, from 30% to 90%, suggesting potential applications in humidity-sensing technologies.</p>","PeriodicalId":267,"journal":{"name":"Ceramics International","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramics International","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ceramint.2024.09.115","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

The impact of tin (Sn4+) doping on sodium yttrium copper titanate (Na0.5Y0.5Cu3Ti4O12) ceramics, prepared using a conventional mixed-oxide route, was thoroughly investigated in terms of microstructure, dielectric properties, electrical response, non-linear behaviors, and humidity-sensing characteristics. All sintered ceramics showed a dense micro-structure and a pure Na0.5Y0.5Cu3Ti4O12 phase without any secondary phases. The doped Na0.5Y0.5Cu3Ti4−xSnxO12 ceramics, with x = 0.05, demonstrated excellent dielectric properties, including a low dielectric loss tangent (∼0.032) and a giant dielectric permittivity (∼1.8 × 104) across a wide temperature range. Sn4+ doping improved the non-linear behaviors at 25°C in Na0.5Y0.5Cu3Ti4O12, with a reduced dielectric loss tangent corresponding to an enhanced grain boundary (GB) response. The colossal dielectric response is attributed to the internal barrier layer capacitor model, which relates to the Schottky barrier height (ΦB) at the GBs. Notably, the ΦB values for the Na0.5Y0.5Cu3Ti4O12 ceramic increased with Sn4+ ion doping. Additionally, an in-depth study of the humidity-sensing properties of the Sn4+-doped Na0.5Y0.5Cu3Ti4O12 material revealed that the capacitance at 1 kHz increased with increasing relative humidity levels, from 30% to 90%, suggesting potential applications in humidity-sensing technologies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
介电响应、非欧姆行为和湿度感应特性:钛酸钇铜钠陶瓷中的锡掺杂
研究人员采用传统的混合氧化物路线制备了钛酸钇铜钠(Na0.5Y0.5Cu3Ti4O12)陶瓷,并深入研究了锡(Sn4+)掺杂对陶瓷微观结构、介电性能、电响应、非线性行为和湿度感应特性的影响。所有烧结陶瓷都显示出致密的微观结构和纯净的 Na0.5Y0.5Cu3Ti4O12 相,没有任何次生相。掺杂了 x = 0.05 的 Na0.5Y0.5Cu3Ti4-xSnxO12 陶瓷显示出优异的介电性能,包括在宽温度范围内的低介电损耗正切(∼0.032)和高介电常数(∼1.8 × 104)。掺杂 Sn4+ 改善了 Na0.5Y0.5Cu3Ti4O12 在 25°C 时的非线性行为,降低了介电损耗正切,从而增强了晶界(GB)响应。巨大的介电响应归因于内部势垒层电容模型,这与晶界处的肖特基势垒高度(ΦB)有关。值得注意的是,Na0.5Y0.5Cu3Ti4O12 陶瓷的ΦB 值随着 Sn4+ 离子的掺杂而增加。此外,对掺杂 Sn4+ 的 Na0.5Y0.5Cu3Ti4O12 材料的湿度传感特性进行的深入研究表明,1 kHz 时的电容随着相对湿度水平(从 30% 到 90%)的增加而增加,这表明该材料在湿度传感技术中具有潜在的应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ceramics International
Ceramics International 工程技术-材料科学:硅酸盐
CiteScore
9.40
自引率
15.40%
发文量
4558
审稿时长
25 days
期刊介绍: Ceramics International covers the science of advanced ceramic materials. The journal encourages contributions that demonstrate how an understanding of the basic chemical and physical phenomena may direct materials design and stimulate ideas for new or improved processing techniques, in order to obtain materials with desired structural features and properties. Ceramics International covers oxide and non-oxide ceramics, functional glasses, glass ceramics, amorphous inorganic non-metallic materials (and their combinations with metal and organic materials), in the form of particulates, dense or porous bodies, thin/thick films and laminated, graded and composite structures. Process related topics such as ceramic-ceramic joints or joining ceramics with dissimilar materials, as well as surface finishing and conditioning are also covered. Besides traditional processing techniques, manufacturing routes of interest include innovative procedures benefiting from externally applied stresses, electromagnetic fields and energetic beams, as well as top-down and self-assembly nanotechnology approaches. In addition, the journal welcomes submissions on bio-inspired and bio-enabled materials designs, experimentally validated multi scale modelling and simulation for materials design, and the use of the most advanced chemical and physical characterization techniques of structure, properties and behaviour. Technologically relevant low-dimensional systems are a particular focus of Ceramics International. These include 0, 1 and 2-D nanomaterials (also covering CNTs, graphene and related materials, and diamond-like carbons), their nanocomposites, as well as nano-hybrids and hierarchical multifunctional nanostructures that might integrate molecular, biological and electronic components.
期刊最新文献
Enhanced Sinterability and Conductivity Insights of Nb2O5 - Doped 8 mol% Yttria-Stabilized Zirconia: Implications for Low-Temperature Ceramic Electrolytes Exploring the Potential of Perovskite Structured SrTiO3 Ceramics Nanoparticles for Developing SrTiO3 Ceramics-Decorated Advanced Super-Wettable and Photocatalytic Self-Cleaning Membranes and Their Applications Dielectric Response, Non-Ohmic Behaviors and Humidity-sensing Characteristics: Tin Doping in Sodium Yttrium Copper Titanate Ceramics Evaluation on the microstructure and corrosion properties of in situ prepared FeCrNiCo-boride cermet by hot press sintering Tuning the Optical, Electrical, Structural and Photocatalytic Activities of Mixed Metal Ferrite by Hydrothermal Synthesis and Polypyrrole Reinforcement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1