Mohammed O. Bayazed, Ahmed S. Al-Fatesh, Anis H. Fakeeha, Ahmed A. Ibrahim, Ahmed E. Abasaeed, Abdulaziz I. Alromaeh, Francesco Frusteri, Jehad K. Abu Dahrieh
{"title":"Role of MgO in Al2O3-supported Fe catalysts for hydrogen and carbon nanotubes formation during catalytic methane decomposition","authors":"Mohammed O. Bayazed, Ahmed S. Al-Fatesh, Anis H. Fakeeha, Ahmed A. Ibrahim, Ahmed E. Abasaeed, Abdulaziz I. Alromaeh, Francesco Frusteri, Jehad K. Abu Dahrieh","doi":"10.1002/ese3.1867","DOIUrl":null,"url":null,"abstract":"<p>Catalytic methane decomposition is a promising technology for reducing the reliance on fossil fuels and mitigating the effects of climate change by producing clean hydrogen and value-added carbon without the emission of greenhouse gases. The aim of the study was to investigate the use of Al<sub>2</sub>O<sub>3</sub>-modified MgO doped iron-based catalysts for the catalytic decomposition of methane. The catalysts were synthesized using the impregnation method and characterized using various analysis techniques, including Brunauer, Emmett, and Teller, temperature programmed reduction, temperature programmed oxidation, X-ray diffraction, thermal gravimetric analysis, Raman, scanning electron microscopy, and transmission electron microscopy. The activity of the synthesized catalysts was tested in a packed-bed reactor with a gas flow rate of 20 mL/min at a temperature of 800°C. The investigation focuses on the influence of incorporating magnesium into alumina catalysts with MgO concentration ranging from (20%–70%), where higher magnesium levels improve catalytic activity by creating more active sites, positively impacting methane decomposition. Enhanced catalyst reducibility and increased particle dispersion lead to improved catalytic properties despite the reduced surface area. The FA70M and FA63M catalysts exhibited almost the same catalytic characteristics and the highest stability and methane conversion among the catalysts investigated, reaching 87% and 85% at 800°C for 120 min. Moreover, both catalysts showed hydrogen yields of 86% and 85%, respectively. The introduction of MgO further increased the total carbon yield from 103% with FA and 39% for FM to 114% and 120% for the respective catalysts (FA70M and FA63M). During the methane decomposition reaction, carbon nanotubes of varying diameters were produced. Higher iron loading resulted in a positive trend.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":"12 10","pages":"4166-4179"},"PeriodicalIF":3.5000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.1867","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ese3.1867","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Catalytic methane decomposition is a promising technology for reducing the reliance on fossil fuels and mitigating the effects of climate change by producing clean hydrogen and value-added carbon without the emission of greenhouse gases. The aim of the study was to investigate the use of Al2O3-modified MgO doped iron-based catalysts for the catalytic decomposition of methane. The catalysts were synthesized using the impregnation method and characterized using various analysis techniques, including Brunauer, Emmett, and Teller, temperature programmed reduction, temperature programmed oxidation, X-ray diffraction, thermal gravimetric analysis, Raman, scanning electron microscopy, and transmission electron microscopy. The activity of the synthesized catalysts was tested in a packed-bed reactor with a gas flow rate of 20 mL/min at a temperature of 800°C. The investigation focuses on the influence of incorporating magnesium into alumina catalysts with MgO concentration ranging from (20%–70%), where higher magnesium levels improve catalytic activity by creating more active sites, positively impacting methane decomposition. Enhanced catalyst reducibility and increased particle dispersion lead to improved catalytic properties despite the reduced surface area. The FA70M and FA63M catalysts exhibited almost the same catalytic characteristics and the highest stability and methane conversion among the catalysts investigated, reaching 87% and 85% at 800°C for 120 min. Moreover, both catalysts showed hydrogen yields of 86% and 85%, respectively. The introduction of MgO further increased the total carbon yield from 103% with FA and 39% for FM to 114% and 120% for the respective catalysts (FA70M and FA63M). During the methane decomposition reaction, carbon nanotubes of varying diameters were produced. Higher iron loading resulted in a positive trend.
期刊介绍:
Energy Science & Engineering is a peer reviewed, open access journal dedicated to fundamental and applied research on energy and supply and use. Published as a co-operative venture of Wiley and SCI (Society of Chemical Industry), the journal offers authors a fast route to publication and the ability to share their research with the widest possible audience of scientists, professionals and other interested people across the globe. Securing an affordable and low carbon energy supply is a critical challenge of the 21st century and the solutions will require collaboration between scientists and engineers worldwide. This new journal aims to facilitate collaboration and spark innovation in energy research and development. Due to the importance of this topic to society and economic development the journal will give priority to quality research papers that are accessible to a broad readership and discuss sustainable, state-of-the art approaches to shaping the future of energy. This multidisciplinary journal will appeal to all researchers and professionals working in any area of energy in academia, industry or government, including scientists, engineers, consultants, policy-makers, government officials, economists and corporate organisations.