Influence of Cold Plasma Priming on Certain Traits of Durum Wheat Plants under Salinity Conditions

IF 1.1 4区 生物学 Q3 PLANT SCIENCES Russian Journal of Plant Physiology Pub Date : 2024-09-01 DOI:10.1134/s1021443724605287
R. E. Duran, U. Kilic, U. Kara
{"title":"Influence of Cold Plasma Priming on Certain Traits of Durum Wheat Plants under Salinity Conditions","authors":"R. E. Duran, U. Kilic, U. Kara","doi":"10.1134/s1021443724605287","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The application of cold plasma as an environmentally friendly, efficient, and cost-effective method has garnered interest for its potential to alleviate the deleterious effects of abiotic stress on plants. This study investigates the impact of nitrogen oxide (NO) cold plasma treatment on wheat (<i>Triticum durum</i> Desf. ‘GAP’) seed germination, seedling growth, and pigment composition under salinity stress conditions. Seeds were exposed to NO cold plasma for 0, 5, 10, and 15 minutes and subsequently sown in Petri dishes with sodium chloride (NaCl) concentrations of 0, 100, 150, and 200 mM to assess morphological and physiological responses between the 7th and 10th days of germination. Results indicated that cold plasma treatment significantly enhanced germination rates and seedling growth under both control and saline conditions, with the 15-min exposure yielding the most pronounced improvements. However, cold plasma treatment alone either decreased leaf pigment content or had no significant effect, whereas under salinity stress, chlorophyll <i>a</i>, chlorophyll <i>b</i>, total chlorophyll, and carotenoid levels showed varied increases with treatment duration. Conversely, anthocyanin levels decreased under salt stress with plasma treatment. The differential effects on pigment composition highlight a complex interaction between cold plasma treatment and plant physiological responses under abiotic stress, suggesting avenues for further research into optimizing treatment protocols for agricultural resilience. This study contributes to the growing body of knowledge on cold plasma applications in agriculture, offering insights into sustainable practices that could mitigate the impacts of global challenges like soil salinity on crop production.</p>","PeriodicalId":21477,"journal":{"name":"Russian Journal of Plant Physiology","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1134/s1021443724605287","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The application of cold plasma as an environmentally friendly, efficient, and cost-effective method has garnered interest for its potential to alleviate the deleterious effects of abiotic stress on plants. This study investigates the impact of nitrogen oxide (NO) cold plasma treatment on wheat (Triticum durum Desf. ‘GAP’) seed germination, seedling growth, and pigment composition under salinity stress conditions. Seeds were exposed to NO cold plasma for 0, 5, 10, and 15 minutes and subsequently sown in Petri dishes with sodium chloride (NaCl) concentrations of 0, 100, 150, and 200 mM to assess morphological and physiological responses between the 7th and 10th days of germination. Results indicated that cold plasma treatment significantly enhanced germination rates and seedling growth under both control and saline conditions, with the 15-min exposure yielding the most pronounced improvements. However, cold plasma treatment alone either decreased leaf pigment content or had no significant effect, whereas under salinity stress, chlorophyll a, chlorophyll b, total chlorophyll, and carotenoid levels showed varied increases with treatment duration. Conversely, anthocyanin levels decreased under salt stress with plasma treatment. The differential effects on pigment composition highlight a complex interaction between cold plasma treatment and plant physiological responses under abiotic stress, suggesting avenues for further research into optimizing treatment protocols for agricultural resilience. This study contributes to the growing body of knowledge on cold plasma applications in agriculture, offering insights into sustainable practices that could mitigate the impacts of global challenges like soil salinity on crop production.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
冷等离子体引物对盐度条件下杜伦麦植株某些性状的影响
摘要冷等离子体作为一种环境友好、高效且成本效益高的方法,因其在减轻非生物胁迫对植物的有害影响方面的潜力而备受关注。本研究探讨了在盐分胁迫条件下,氧化氮(NO)冷等离子体处理对小麦(Triticum durum Desf. 'GAP')种子萌发、幼苗生长和色素组成的影响。将种子暴露于 NO 冷等离子体中 0、5、10 和 15 分钟,然后播种在氯化钠(NaCl)浓度为 0、100、150 和 200 mM 的培养皿中,以评估发芽第 7 到 10 天的形态和生理反应。结果表明,在对照和盐水条件下,冷等离子体处理都能显著提高萌芽率和幼苗生长速度,其中 15 分钟的暴露对萌芽率和幼苗生长速度的改善最为明显。然而,单独进行冷等离子体处理会降低叶片色素含量或无明显影响,而在盐度胁迫下,叶绿素 a、叶绿素 b、总叶绿素和类胡萝卜素含量随处理时间的延长而出现不同程度的增加。相反,在盐胁迫下,花青素含量随血浆处理时间的延长而降低。对色素组成的不同影响凸显了冷等离子体处理与非生物胁迫下植物生理反应之间复杂的相互作用,为进一步研究优化处理方案以提高农业抗逆性提供了途径。这项研究为冷等离子体在农业中的应用提供了越来越多的知识,为减轻土壤盐碱化等全球性挑战对作物生产的影响提供了可持续的实践方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.00
自引率
14.30%
发文量
107
审稿时长
6 months
期刊介绍: Russian Journal of Plant Physiology is a leading journal in phytophysiology. It embraces the full spectrum of plant physiology and brings together the related aspects of biophysics, biochemistry, cytology, anatomy, genetics, etc. The journal publishes experimental and theoretical articles, reviews, short communications, and descriptions of new methods. Some issues cover special problems of plant physiology, thus presenting collections of articles and providing information in rapidly growing fields. The editorial board is highly interested in publishing research from all countries and accepts manuscripts in English.
期刊最新文献
Physiochemical and Molecular Response of the Grafted ‘Bidaneh Ghermez’ Grape Cultivar on Native Rootstocks to Identify Tolerant Combination to Drought Stress in Vineyard Conditions Energy and Pro-/Antioxidant Metabolism of Heracleum sosnowskyi Manden. Buds during the Winter Dormancy Insights into the Metabolism of Rice Leaves (Oryza sativa L.) under Shade Stress by Investigating the Metabolite Profile Using Gas Chromatography-Mass Spectrometry (GC-MS) Analysis Decoding Phytotoxicity: The Predictive Power of Total Soil Copper Content in Long-Term Pepper Growth in Copper-Polluted Soils Histological Identification of Physiological Changes in Vascular Cell Morphology in the Lower Stem of Winter Barley (Hordeum vulgare L.) during Freezing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1