Early length changes and microscopic phase analysis of phosphorus hemihydrate gypsum fireproof mortar

IF 1.8 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Research Express Pub Date : 2024-09-08 DOI:10.1088/2053-1591/ad75e6
Wang Xuebing and Yuanyuan Wang
{"title":"Early length changes and microscopic phase analysis of phosphorus hemihydrate gypsum fireproof mortar","authors":"Wang Xuebing and Yuanyuan Wang","doi":"10.1088/2053-1591/ad75e6","DOIUrl":null,"url":null,"abstract":"Coating the surface of steel structures with phosphohemihydrate gypsum fireproof mortar can improve the fire resistance of steel structures. The hydration curve of phosphorus hemihydrate gypsum (PHG) showed a monotonic increasing trend, and the hydration time was about 1 day. In order to study the hydration process of phosphorus hemihydrate gypsum fireproof mortar, its length change in the early hardening stage was experimentally investigated. The results showed that compared with the hydration time of phosphohemihydrate gypsum, the duration of early length changes in phosphohemihydrate gypsum fireproof mortar was significantly prolonged to about 4 days, and four intervals were clearly observed during this process. Hydroxypropyl methyl cellulose (HPMC) as a water retaining agent, hydroxypropyl starch ether (HPS) as a thixotropic agent, and dispersed latex powder (LP) can all make the four intervals of length changes of fireproof mortar more significant. After adding HPMC, HPS, and LP, it can promote the formation of dihydrate gypsum mainly in fireproof mortar, but dihydrate gypsum crystals were more likely to grow along the [021] direction. The addition of additives can also effectively improve the pore structure of phosphogypsum fireproof mortar.","PeriodicalId":18530,"journal":{"name":"Materials Research Express","volume":"118 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Express","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2053-1591/ad75e6","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Coating the surface of steel structures with phosphohemihydrate gypsum fireproof mortar can improve the fire resistance of steel structures. The hydration curve of phosphorus hemihydrate gypsum (PHG) showed a monotonic increasing trend, and the hydration time was about 1 day. In order to study the hydration process of phosphorus hemihydrate gypsum fireproof mortar, its length change in the early hardening stage was experimentally investigated. The results showed that compared with the hydration time of phosphohemihydrate gypsum, the duration of early length changes in phosphohemihydrate gypsum fireproof mortar was significantly prolonged to about 4 days, and four intervals were clearly observed during this process. Hydroxypropyl methyl cellulose (HPMC) as a water retaining agent, hydroxypropyl starch ether (HPS) as a thixotropic agent, and dispersed latex powder (LP) can all make the four intervals of length changes of fireproof mortar more significant. After adding HPMC, HPS, and LP, it can promote the formation of dihydrate gypsum mainly in fireproof mortar, but dihydrate gypsum crystals were more likely to grow along the [021] direction. The addition of additives can also effectively improve the pore structure of phosphogypsum fireproof mortar.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
半水磷石膏防火砂浆的早期长度变化和显微相分析
在钢结构表面涂抹半水磷石膏防火砂浆可以提高钢结构的耐火性能。半水磷石膏(PHG)的水化曲线呈单调上升趋势,水化时间约为 1 天。为了研究半水磷石膏防火砂浆的水化过程,对其硬化初期的长度变化进行了实验研究。结果表明,与半水磷石膏的水化时间相比,半水磷石膏防火砂浆早期长度变化的持续时间明显延长,约为 4 天,并且在这一过程中明显观察到四个时间间隔。作为保水剂的羟丙基甲基纤维素(HPMC)、作为触变剂的羟丙基淀粉醚(HPS)和分散乳胶粉(LP)都能使防火砂浆的四个长度变化间隔更加明显。添加 HPMC、HPS 和 LP 后,主要能促进防火砂浆中二水石膏的形成,但二水石膏晶体更容易沿[021]方向生长。添加剂还能有效改善磷石膏防火砂浆的孔隙结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Research Express
Materials Research Express MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
4.50
自引率
4.30%
发文量
640
审稿时长
12 weeks
期刊介绍: A broad, rapid peer-review journal publishing new experimental and theoretical research on the design, fabrication, properties and applications of all classes of materials.
期刊最新文献
Effect of scanning speeds on microstructure evolution and properties of 70Cr8Ni2Y coatings by direct laser deposition A simple green synthesis of carbon quantum dots from Prunus Armeniaca and their application as fluorescent probes for the selective and sensitive detection of Cd2+ metal ion Growth, magnetic, and electronic properties of Ni-Zn ferrites thin films Effect of Y content on microstructure evolution and tensile properties of Mg-8Li-3Al-2Sn-xY alloys Effect of x-ray irradiation on magnetocaloric materials, (MnNiSi)1-x(Fe2Ge)x and LaFe13-x-yMnxSiyHz
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1