Accurate Solution of Adjustment Models of 3D Control Network

IF 1 4区 工程技术 Q4 INSTRUMENTS & INSTRUMENTATION Measurement Science Review Pub Date : 2024-08-30 DOI:10.2478/msr-2024-0021
Chen Zhe, Fan Baixing
{"title":"Accurate Solution of Adjustment Models of 3D Control Network","authors":"Chen Zhe, Fan Baixing","doi":"10.2478/msr-2024-0021","DOIUrl":null,"url":null,"abstract":"The spatial Three-Dimensional (3D) edge network is one of the typical rank-lossless networks. The current network adjustment usually uses Least Squares (LS) algorithm, which has the complexity of linearization derivation, computational volume and other problems. It is based on high-precision ranging values. This study aims to minimize the sum of the difference between the inverse distance of the control point coordinates and the observation distance, the composition of the non-linear system of equations to build a functional model. Considering the advantages of the intelligent optimization algorithm in the non-linear equation system solving method, such as no demand derivation and simple formula derivation, the Particle Swarm Optimization (PSO) algorithm is introduced and the improved PSO algorithm is constructed; at the same time, the improved Gauss-Newton (G-N) algorithm is studied for the calculation of the 3D control network adjustment function model to solve the problems of computational volume and poor convergence performance of the algorithm with large residuals of the unknown parameters. The results show that the improved PSO algorithm and the improved G-N algorithm can guarantee the accuracy of the solution results. Compared with the traditional PSO algorithm, the improved PSO algorithm has a faster optimization speed. When the residuals of the unknown parameters are too large, the improved G-N algorithm is more stable than the improved PSO algorithm, which not only provides a new way to solve the spatial 3D network, but also provides theoretical support for the establishment of the spatial 3D network.","PeriodicalId":49848,"journal":{"name":"Measurement Science Review","volume":"11 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Science Review","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2478/msr-2024-0021","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

The spatial Three-Dimensional (3D) edge network is one of the typical rank-lossless networks. The current network adjustment usually uses Least Squares (LS) algorithm, which has the complexity of linearization derivation, computational volume and other problems. It is based on high-precision ranging values. This study aims to minimize the sum of the difference between the inverse distance of the control point coordinates and the observation distance, the composition of the non-linear system of equations to build a functional model. Considering the advantages of the intelligent optimization algorithm in the non-linear equation system solving method, such as no demand derivation and simple formula derivation, the Particle Swarm Optimization (PSO) algorithm is introduced and the improved PSO algorithm is constructed; at the same time, the improved Gauss-Newton (G-N) algorithm is studied for the calculation of the 3D control network adjustment function model to solve the problems of computational volume and poor convergence performance of the algorithm with large residuals of the unknown parameters. The results show that the improved PSO algorithm and the improved G-N algorithm can guarantee the accuracy of the solution results. Compared with the traditional PSO algorithm, the improved PSO algorithm has a faster optimization speed. When the residuals of the unknown parameters are too large, the improved G-N algorithm is more stable than the improved PSO algorithm, which not only provides a new way to solve the spatial 3D network, but also provides theoretical support for the establishment of the spatial 3D network.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三维控制网络调整模型的精确求解
空间三维(3D)边缘网络是典型的无等级损失网络之一。目前的网络调整通常采用最小二乘法(LS)算法,该算法存在线性化推导复杂、计算量大等问题。它基于高精度的测距值。本研究旨在最小化控制点坐标反距离与观测距离的差值之和,组成非线性方程组建立函数模型。考虑到智能优化算法在非线性方程组求解方法中无需求推导、公式推导简单等优点,引入粒子群优化(PSO)算法,构建了改进的 PSO 算法;同时研究了改进的高斯-牛顿(G-N)算法用于三维控制网调整函数模型的计算,以解决计算量大、未知参数残差大的算法收敛性能差等问题。结果表明,改进的 PSO 算法和改进的 G-N 算法可以保证求解结果的准确性。与传统的 PSO 算法相比,改进的 PSO 算法具有更快的优化速度。当未知参数残差过大时,改进的 G-N 算法比改进的 PSO 算法更稳定,这不仅为空间三维网络的求解提供了一种新的途径,也为空间三维网络的建立提供了理论支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Measurement Science Review
Measurement Science Review INSTRUMENTS & INSTRUMENTATION-
CiteScore
2.00
自引率
11.10%
发文量
37
审稿时长
4.8 months
期刊介绍: - theory of measurement - mathematical processing of measured data - measurement uncertainty minimisation - statistical methods in data evaluation and modelling - measurement as an interdisciplinary activity - measurement science in education - medical imaging methods, image processing - biosignal measurement, processing and analysis - model based biomeasurements - neural networks in biomeasurement - telemeasurement in biomedicine - measurement in nanomedicine - measurement of basic physical quantities - magnetic and electric fields measurements - measurement of geometrical and mechanical quantities - optical measuring methods - electromagnetic compatibility - measurement in material science
期刊最新文献
Accurate Solution of Adjustment Models of 3D Control Network Metamaterial Inspired Stub-Incorporated Quad-Band Diamond Shaped Monopole Antenna for Satellite and Wireless Application Influence of the Electrical Test Setup on the Voltage Gain Measurement of an Unloaded Rosen-Type Piezoelectric Transformer Vibrating in the First Three Modes ECG Arrhythmia Measurement and Classification for Portable Monitoring Adaptive Proportional Derivative Control for Magnetic Bearing in Full Maglev Left Ventricular Assist Device
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1