{"title":"Geographic patterns and climatic drivers of phylogenetic structure of liverworts along a long elevational gradient in the central Himalaya","authors":"Hong Qian","doi":"10.1111/jse.13129","DOIUrl":null,"url":null,"abstract":"For clades originating in warm climates, the tropical niche conservatism hypothesis predicts that current biological assemblages in colder or drier climates are expected to have lower phylogenetic diversity, and species in colder or drier climates are expected to be more closely related to each other (i.e., higher phylogenetic clustering). Liverworts are one of the oldest clades of extant land plants. They originated about 500 Ma during a warm (“greenhouse”) period and experienced multiple major cycles of warm and cold periods. Here, I test the tropical niche conservatism hypothesis using liverwort assemblages distributed along an elevational gradient crossing about 5000 m of elevation in the central Himalaya. I found that, in general, phylogenetic diversity and dispersion decrease with increasing elevation and thus with decreasing temperature, which is consistent with the tropical niche conservatism hypothesis. Phylogenetic diversity decreases with elevation monotonically, but phylogenetic dispersion decreases with elevation in a triphasic (zig‐zag) pattern, which is generally consistent with the triphasic pattern found in angiosperms and polypod ferns along the same elevational gradient. Temperature‐related variables explained approximately the same amount of the variation in phylogenetic diversity and dispersion as did precipitation‐related variables, although mean annual temperature explained 9%−15% more variation than did annual precipitation. Climate extreme variables explained approximately the same amount of variation in phylogenetic diversity and dispersion as did climate seasonality variables.","PeriodicalId":17087,"journal":{"name":"Journal of Systematics and Evolution","volume":"98 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systematics and Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/jse.13129","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
For clades originating in warm climates, the tropical niche conservatism hypothesis predicts that current biological assemblages in colder or drier climates are expected to have lower phylogenetic diversity, and species in colder or drier climates are expected to be more closely related to each other (i.e., higher phylogenetic clustering). Liverworts are one of the oldest clades of extant land plants. They originated about 500 Ma during a warm (“greenhouse”) period and experienced multiple major cycles of warm and cold periods. Here, I test the tropical niche conservatism hypothesis using liverwort assemblages distributed along an elevational gradient crossing about 5000 m of elevation in the central Himalaya. I found that, in general, phylogenetic diversity and dispersion decrease with increasing elevation and thus with decreasing temperature, which is consistent with the tropical niche conservatism hypothesis. Phylogenetic diversity decreases with elevation monotonically, but phylogenetic dispersion decreases with elevation in a triphasic (zig‐zag) pattern, which is generally consistent with the triphasic pattern found in angiosperms and polypod ferns along the same elevational gradient. Temperature‐related variables explained approximately the same amount of the variation in phylogenetic diversity and dispersion as did precipitation‐related variables, although mean annual temperature explained 9%−15% more variation than did annual precipitation. Climate extreme variables explained approximately the same amount of variation in phylogenetic diversity and dispersion as did climate seasonality variables.
期刊介绍:
Journal of Systematics and Evolution (JSE, since 2008; formerly Acta Phytotaxonomica Sinica) is a plant-based international journal newly dedicated to the description and understanding of the biological diversity. It covers: description of new taxa, monographic revision, phylogenetics, molecular evolution and genome evolution, evolutionary developmental biology, evolutionary ecology, population biology, conservation biology, biogeography, paleobiology, evolutionary theories, and related subjects.