Low-energy N+ ion beam induced chemical vapor deposition using tetraethyl orthosilicate, hexamethyldisiloxane, or hexamethyldigermane

IF 1.4 4区 物理与天体物理 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY AIP Advances Pub Date : 2024-09-11 DOI:10.1063/5.0214908
Satoru Yoshimura, Takae Takeuchi, Masato Kiuchi
{"title":"Low-energy N+ ion beam induced chemical vapor deposition using tetraethyl orthosilicate, hexamethyldisiloxane, or hexamethyldigermane","authors":"Satoru Yoshimura, Takae Takeuchi, Masato Kiuchi","doi":"10.1063/5.0214908","DOIUrl":null,"url":null,"abstract":"In this study, we conducted an experiment in which a source material was sprayed onto a substrate with simultaneous N+ ion beam injections. Hexamethyldisiloxane (HMDSO) or tetraethyl orthosilicate (TEOS) was used as a source material. The energy of N+ ions was set at 100 eV. The substrate temperature was set at room temperature. As a result of each trial, a film was deposited on the substrate in both HMDSO and TEOS cases. The film was analyzed by x-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy. We found that the film was silicon dioxide and nitrogen atoms (2–4 at. %) were included in the film. For comparison, a trial was also conducted in which hexamethyldigermane (HMDG) was sprayed onto a substrate with simultaneous 30 eV N+ ion beam injections. Although HMDG had no oxygen atoms in its molecule, XPS and FTIR results showed that the film was germanium oxide containing nitrogen (2 at. %).","PeriodicalId":7619,"journal":{"name":"AIP Advances","volume":"9 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIP Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1063/5.0214908","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we conducted an experiment in which a source material was sprayed onto a substrate with simultaneous N+ ion beam injections. Hexamethyldisiloxane (HMDSO) or tetraethyl orthosilicate (TEOS) was used as a source material. The energy of N+ ions was set at 100 eV. The substrate temperature was set at room temperature. As a result of each trial, a film was deposited on the substrate in both HMDSO and TEOS cases. The film was analyzed by x-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy. We found that the film was silicon dioxide and nitrogen atoms (2–4 at. %) were included in the film. For comparison, a trial was also conducted in which hexamethyldigermane (HMDG) was sprayed onto a substrate with simultaneous 30 eV N+ ion beam injections. Although HMDG had no oxygen atoms in its molecule, XPS and FTIR results showed that the film was germanium oxide containing nitrogen (2 at. %).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用正硅酸四乙酯、六甲基二硅氧烷或六甲基二锗烷的低能 N+ 离子束诱导化学气相沉积技术
在这项研究中,我们进行了一项实验,将源材料喷射到基底上,同时注入 N+ 离子束。我们使用六甲基二硅氧烷(HMDSO)或正硅酸四乙酯(TEOS)作为源材料。N+ 离子的能量设定为 100 eV。基底温度设定为室温。每次试验的结果都是在 HMDSO 和 TEOS 的基底上沉积出一层薄膜。通过 X 射线光电子能谱 (XPS) 和傅立叶变换红外光谱 (FTIR) 对薄膜进行了分析。我们发现薄膜是二氧化硅,其中含有氮原子(2-4%)。为了进行比较,我们还进行了一项试验,将六甲基二锗 (HMDG) 喷射到基底上,同时注入 30 eV N+ 离子束。虽然 HMDG 分子中没有氧原子,但 XPS 和傅立叶变换红外光谱结果表明,薄膜是含氮(2%)的氧化锗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
AIP Advances
AIP Advances NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
2.80
自引率
6.20%
发文量
1233
审稿时长
2-4 weeks
期刊介绍: AIP Advances is an open access journal publishing in all areas of physical sciences—applied, theoretical, and experimental. All published articles are freely available to read, download, and share. The journal prides itself on the belief that all good science is important and relevant. Our inclusive scope and publication standards make it an essential outlet for scientists in the physical sciences. AIP Advances is a community-based journal, with a fast production cycle. The quick publication process and open-access model allows us to quickly distribute new scientific concepts. Our Editors, assisted by peer review, determine whether a manuscript is technically correct and original. After publication, the readership evaluates whether a manuscript is timely, relevant, or significant.
期刊最新文献
Dimensional analysis of diffusive association rate equations. Mathematical analysis of the Wiener processes with time-delayed feedback Numerical simulation and experimental study of the dynamic characteristics of a gas turbine rotor system with beam sea and head sea excitation Design and simulation of a Ka-band frequency doubling gyroklystron amplifier Flexible and anisotropically conductive film by assembly of silicone rubber and cobalt-coated glass fiber composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1