{"title":"Fluid-acoustic monolithic simulation based on spectral element method to solve flows past a slotted circular cylinder at low Reynolds numbers","authors":"Ya Zhuo, Guoliang Qin, Ximeng Ye","doi":"10.1063/5.0215719","DOIUrl":null,"url":null,"abstract":"Aerodynamic noise resulting from the flow around cylinders is a significant engineering challenge in aviation and wind engineering. The phenomenon of alternating vortex shedding in the flow leads to vibration and noise generation. However, accurately describing both the flow field and the sound field is challenging due to the significant difference in magnitude between them. To tackle this issue, this work introduces the application of the spectral element method (SEM) and flow-acoustic monolithic simulation for solving the two-dimensional compressible Navier–Stokes equations at low Reynolds numbers. This study is to investigate the reduction of flow-induced noise through the implementation of slotting technology on a circular cylinder. This study focuses on examining two different slit width ratios, s/d = 0.15 and 0.25, with a slit angle of attack of 0°. A comparative analysis is conducted between a complete circular cylinder and a slotted circular cylinder. The findings indicate that the slotted cylinder exhibits reduced intensity of vortex shedding and an extended region of downstream vortex generation compared to the complete cylinder. Notably, when s/d = 0.25, the slotted cylinder demonstrates minimal noise generation. Even at s/d = 0.15, a significant reduction in flow-induced noise is observed. These results highlight the potential of utilizing slotting technology on cylinders to effectively mitigate aerodynamic noise. The application of SEM and flow-acoustic monolithic simulation shows their relevance in analyzing and designing noise mitigation techniques in aerodynamics. This work can develop innovative solutions to reduce noise and improve the performance of various applications in aviation and wind engineering.","PeriodicalId":7619,"journal":{"name":"AIP Advances","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIP Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1063/5.0215719","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Aerodynamic noise resulting from the flow around cylinders is a significant engineering challenge in aviation and wind engineering. The phenomenon of alternating vortex shedding in the flow leads to vibration and noise generation. However, accurately describing both the flow field and the sound field is challenging due to the significant difference in magnitude between them. To tackle this issue, this work introduces the application of the spectral element method (SEM) and flow-acoustic monolithic simulation for solving the two-dimensional compressible Navier–Stokes equations at low Reynolds numbers. This study is to investigate the reduction of flow-induced noise through the implementation of slotting technology on a circular cylinder. This study focuses on examining two different slit width ratios, s/d = 0.15 and 0.25, with a slit angle of attack of 0°. A comparative analysis is conducted between a complete circular cylinder and a slotted circular cylinder. The findings indicate that the slotted cylinder exhibits reduced intensity of vortex shedding and an extended region of downstream vortex generation compared to the complete cylinder. Notably, when s/d = 0.25, the slotted cylinder demonstrates minimal noise generation. Even at s/d = 0.15, a significant reduction in flow-induced noise is observed. These results highlight the potential of utilizing slotting technology on cylinders to effectively mitigate aerodynamic noise. The application of SEM and flow-acoustic monolithic simulation shows their relevance in analyzing and designing noise mitigation techniques in aerodynamics. This work can develop innovative solutions to reduce noise and improve the performance of various applications in aviation and wind engineering.
期刊介绍:
AIP Advances is an open access journal publishing in all areas of physical sciences—applied, theoretical, and experimental. All published articles are freely available to read, download, and share. The journal prides itself on the belief that all good science is important and relevant. Our inclusive scope and publication standards make it an essential outlet for scientists in the physical sciences.
AIP Advances is a community-based journal, with a fast production cycle. The quick publication process and open-access model allows us to quickly distribute new scientific concepts. Our Editors, assisted by peer review, determine whether a manuscript is technically correct and original. After publication, the readership evaluates whether a manuscript is timely, relevant, or significant.