Mohamed S. Abdo, Muhammad A. Shar, Ahmed Fouly, Mushtaq A. Dar, Hany S. Abdo
{"title":"Experimental investigation on the tribo-mechanical behavior of PMMA reinforced by solid lubricant filler for dental implant applications","authors":"Mohamed S. Abdo, Muhammad A. Shar, Ahmed Fouly, Mushtaq A. Dar, Hany S. Abdo","doi":"10.1063/5.0225107","DOIUrl":null,"url":null,"abstract":"This study investigates the enhancement of mechanical and tribological behavior in polymethyl methacrylate (PMMA) composites reinforced with graphene oxide (GO) as a solid lubricant filler for advanced biomedical applications, particularly dental implants. PMMA/GO composites were prepared with varying weight percentages of GO (0, 0.2, 0.5, 0.7, and 1 wt. %) to assess their impact on material performance. A noteworthy improvement in both tensile strength and Young’s modulus was detected, reaching up to 141% and 10.6%, respectively, at optimized GO loadings of 1%. Microstructural analysis utilizing scanning electron microscopy for the worn surface revealed enhanced dispersion and interfacial adhesion between GO and the PMMA matrix, reinforcing mechanical coherence. Tribological properties also demonstrated enhancement, with PMMA composites containing 1 wt. % GO exhibiting optimal mechanical and tribological characteristics compared to lower weight fractions. Moreover, microscopic examination revealed a shift in the wear mechanism of the PMMA-GO composite, which was attributed to the lower friction coefficient obtained by GO integration.","PeriodicalId":7619,"journal":{"name":"AIP Advances","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIP Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1063/5.0225107","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the enhancement of mechanical and tribological behavior in polymethyl methacrylate (PMMA) composites reinforced with graphene oxide (GO) as a solid lubricant filler for advanced biomedical applications, particularly dental implants. PMMA/GO composites were prepared with varying weight percentages of GO (0, 0.2, 0.5, 0.7, and 1 wt. %) to assess their impact on material performance. A noteworthy improvement in both tensile strength and Young’s modulus was detected, reaching up to 141% and 10.6%, respectively, at optimized GO loadings of 1%. Microstructural analysis utilizing scanning electron microscopy for the worn surface revealed enhanced dispersion and interfacial adhesion between GO and the PMMA matrix, reinforcing mechanical coherence. Tribological properties also demonstrated enhancement, with PMMA composites containing 1 wt. % GO exhibiting optimal mechanical and tribological characteristics compared to lower weight fractions. Moreover, microscopic examination revealed a shift in the wear mechanism of the PMMA-GO composite, which was attributed to the lower friction coefficient obtained by GO integration.
期刊介绍:
AIP Advances is an open access journal publishing in all areas of physical sciences—applied, theoretical, and experimental. All published articles are freely available to read, download, and share. The journal prides itself on the belief that all good science is important and relevant. Our inclusive scope and publication standards make it an essential outlet for scientists in the physical sciences.
AIP Advances is a community-based journal, with a fast production cycle. The quick publication process and open-access model allows us to quickly distribute new scientific concepts. Our Editors, assisted by peer review, determine whether a manuscript is technically correct and original. After publication, the readership evaluates whether a manuscript is timely, relevant, or significant.