Wei Shi, Yingshi Su, Rui Zhang, Wei Xia, Zhenqiang Lian, Ning Mao, Yanyu Wang, Anqin Zhang, Xin Gao, Yan Zhang
{"title":"Prediction of axillary lymph node metastasis using a magnetic resonance imaging radiomics model of invasive breast cancer primary tumor","authors":"Wei Shi, Yingshi Su, Rui Zhang, Wei Xia, Zhenqiang Lian, Ning Mao, Yanyu Wang, Anqin Zhang, Xin Gao, Yan Zhang","doi":"10.1186/s40644-024-00771-y","DOIUrl":null,"url":null,"abstract":"This study investigated the clinical value of breast magnetic resonance imaging (MRI) radiomics for predicting axillary lymph node metastasis (ALNM) and to compare the discriminative abilities of different combinations of MRI sequences. This study included 141 patients diagnosed with invasive breast cancer from two centers (center 1: n = 101, center 2: n = 40). Patients from center 1 were randomly divided into training set and test set 1. Patients from center 2 were assigned to the test set 2. All participants underwent preoperative MRI, and four distinct MRI sequences were obtained. The volume of interest (VOI) of the breast tumor was delineated on the dynamic contrast-enhanced (DCE) postcontrast phase 2 sequence, and the VOIs of other sequences were adjusted when required. Subsequently, radiomics features were extracted from the VOIs using an open-source package. Both single- and multisequence radiomics models were constructed using the logistic regression method in the training set. The area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, specificity, and precision of the radiomics model for the test set 1 and test set 2 were calculated. Finally, the diagnostic performance of each model was compared with the diagnostic level of junior and senior radiologists. The single-sequence ALNM classifier derived from DCE postcontrast phase 1 had the best performance for both test set 1 (AUC = 0.891) and test set 2 (AUC = 0.619). The best-performing multisequence ALNM classifiers for both test set 1 (AUC = 0.910) and test set 2 (AUC = 0.717) were generated from DCE postcontrast phase 1, T2-weighted imaging, and diffusion-weighted imaging single-sequence ALNM classifiers. Both had a higher diagnostic level than the junior and senior radiologists. The combination of DCE postcontrast phase 1, T2-weighted imaging, and diffusion-weighted imaging radiomics features had the best performance in predicting ALNM from breast cancer. Our study presents a well-performing and noninvasive tool for ALNM prediction in patients with breast cancer.","PeriodicalId":9548,"journal":{"name":"Cancer Imaging","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40644-024-00771-y","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the clinical value of breast magnetic resonance imaging (MRI) radiomics for predicting axillary lymph node metastasis (ALNM) and to compare the discriminative abilities of different combinations of MRI sequences. This study included 141 patients diagnosed with invasive breast cancer from two centers (center 1: n = 101, center 2: n = 40). Patients from center 1 were randomly divided into training set and test set 1. Patients from center 2 were assigned to the test set 2. All participants underwent preoperative MRI, and four distinct MRI sequences were obtained. The volume of interest (VOI) of the breast tumor was delineated on the dynamic contrast-enhanced (DCE) postcontrast phase 2 sequence, and the VOIs of other sequences were adjusted when required. Subsequently, radiomics features were extracted from the VOIs using an open-source package. Both single- and multisequence radiomics models were constructed using the logistic regression method in the training set. The area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, specificity, and precision of the radiomics model for the test set 1 and test set 2 were calculated. Finally, the diagnostic performance of each model was compared with the diagnostic level of junior and senior radiologists. The single-sequence ALNM classifier derived from DCE postcontrast phase 1 had the best performance for both test set 1 (AUC = 0.891) and test set 2 (AUC = 0.619). The best-performing multisequence ALNM classifiers for both test set 1 (AUC = 0.910) and test set 2 (AUC = 0.717) were generated from DCE postcontrast phase 1, T2-weighted imaging, and diffusion-weighted imaging single-sequence ALNM classifiers. Both had a higher diagnostic level than the junior and senior radiologists. The combination of DCE postcontrast phase 1, T2-weighted imaging, and diffusion-weighted imaging radiomics features had the best performance in predicting ALNM from breast cancer. Our study presents a well-performing and noninvasive tool for ALNM prediction in patients with breast cancer.
Cancer ImagingONCOLOGY-RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
CiteScore
7.00
自引率
0.00%
发文量
66
审稿时长
>12 weeks
期刊介绍:
Cancer Imaging is an open access, peer-reviewed journal publishing original articles, reviews and editorials written by expert international radiologists working in oncology.
The journal encompasses CT, MR, PET, ultrasound, radionuclide and multimodal imaging in all kinds of malignant tumours, plus new developments, techniques and innovations. Topics of interest include:
Breast Imaging
Chest
Complications of treatment
Ear, Nose & Throat
Gastrointestinal
Hepatobiliary & Pancreatic
Imaging biomarkers
Interventional
Lymphoma
Measurement of tumour response
Molecular functional imaging
Musculoskeletal
Neuro oncology
Nuclear Medicine
Paediatric.