{"title":"Graphene oxide and cuprous oxide/hydrogel modified epoxy coating for marine antifouling","authors":"Fangyuan Ding, Min Wang, Lili Xue","doi":"10.1007/s11998-024-00926-3","DOIUrl":null,"url":null,"abstract":"<div><p>Marine biofouling has detrimental effects on the performance and service life of ships and drilling platforms, leading to increased fuel consumption, corrosion of structural surfaces, and significant financial losses. To address these challenges, we developed epoxy coatings that incorporate graphene oxide (GO) and release copper ions (Cu<span>\\(^{2+}\\)</span>). We carried out microalgae adhesion studies and marine bacterial adhesion experiments on the various composite coatings to examine the antifouling performance of the composite coatings. Additionally, we investigated the underlying mechanisms responsible for the effects of GO and Cu<span>\\(^{2+}\\)</span>. The results demonstrated the superior anti-adhesion properties of GO. The amount of microalgae adhering to the GO modified epoxy coating was only 13% of that adhering to the epoxy resin coating. Moreover, no microalgae adhesion was observed in the microalgae adhesion assay for the GO/Cu<span>\\(_{2}\\)</span>O hydrogel modified epoxy composite coating (GCHMC). Additionally, we observed a sustained release of Cu<span>\\(^{2+}\\)</span> from the GCHMC for over 100 days, as indicated by the Cu<span>\\(^{2+}\\)</span> release trend. Therefore, the GCHMC effectively showcased its long-lasting marine antifouling properties.</p></div>","PeriodicalId":619,"journal":{"name":"Journal of Coatings Technology and Research","volume":"21 6","pages":"1955 - 1963"},"PeriodicalIF":2.3000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Coatings Technology and Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11998-024-00926-3","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Marine biofouling has detrimental effects on the performance and service life of ships and drilling platforms, leading to increased fuel consumption, corrosion of structural surfaces, and significant financial losses. To address these challenges, we developed epoxy coatings that incorporate graphene oxide (GO) and release copper ions (Cu\(^{2+}\)). We carried out microalgae adhesion studies and marine bacterial adhesion experiments on the various composite coatings to examine the antifouling performance of the composite coatings. Additionally, we investigated the underlying mechanisms responsible for the effects of GO and Cu\(^{2+}\). The results demonstrated the superior anti-adhesion properties of GO. The amount of microalgae adhering to the GO modified epoxy coating was only 13% of that adhering to the epoxy resin coating. Moreover, no microalgae adhesion was observed in the microalgae adhesion assay for the GO/Cu\(_{2}\)O hydrogel modified epoxy composite coating (GCHMC). Additionally, we observed a sustained release of Cu\(^{2+}\) from the GCHMC for over 100 days, as indicated by the Cu\(^{2+}\) release trend. Therefore, the GCHMC effectively showcased its long-lasting marine antifouling properties.
期刊介绍:
Journal of Coatings Technology and Research (JCTR) is a forum for the exchange of research, experience, knowledge and ideas among those with a professional interest in the science, technology and manufacture of functional, protective and decorative coatings including paints, inks and related coatings and their raw materials, and similar topics.