Exploring percolation features with polynomial algorithms for classifying Covid-19 in chest X-ray images

IF 3.9 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pattern Recognition Letters Pub Date : 2024-08-02 DOI:10.1016/j.patrec.2024.07.022
Guilherme F. Roberto, Danilo C. Pereira, Alessandro S. Martins, Thaína A.A. Tosta, Carlos Soares, Alessandra Lumini, Guilherme B. Rozendo, Leandro A. Neves, Marcelo Z. Nascimento
{"title":"Exploring percolation features with polynomial algorithms for classifying Covid-19 in chest X-ray images","authors":"Guilherme F. Roberto, Danilo C. Pereira, Alessandro S. Martins, Thaína A.A. Tosta, Carlos Soares, Alessandra Lumini, Guilherme B. Rozendo, Leandro A. Neves, Marcelo Z. Nascimento","doi":"10.1016/j.patrec.2024.07.022","DOIUrl":null,"url":null,"abstract":"Covid-19 is a severe illness caused by the Sars-CoV-2 virus, initially identified in China in late 2019 and swiftly spreading globally. Since the virus primarily impacts the lungs, analyzing chest X-rays stands as a reliable and widely accessible means of diagnosing the infection. In computer vision, deep learning models such as CNNs have been the main adopted approach for detection of Covid-19 in chest X-ray images. However, we believe that handcrafted features can also provide relevant results, as shown previously in similar image classification challenges. In this study, we propose a method for identifying Covid-19 in chest X-ray images by extracting and classifying local and global percolation-based features. This technique was tested on three datasets: one comprising 2,002 segmented samples categorized into two groups (Covid-19 and Healthy); another with 1,125 non-segmented samples categorized into three groups (Covid-19, Healthy, and Pneumonia); and a third one composed of 4,809 non-segmented images representing three classes (Covid-19, Healthy, and Pneumonia). Then, 48 percolation features were extracted and give as input into six distinct classifiers. Subsequently, the AUC and accuracy metrics were assessed. We used the 10-fold cross-validation approach and evaluated lesion sub-types via binary and multiclass classification using the Hermite polynomial classifier, a novel approach in this domain. The Hermite polynomial classifier exhibited the most promising outcomes compared to five other machine learning algorithms, wherein the best obtained values for accuracy and AUC were 98.72% and 0.9917, respectively. We also evaluated the influence of noise in the features and in the classification accuracy. These results, based in the integration of percolation features with the Hermite polynomial, hold the potential for enhancing lesion detection and supporting clinicians in their diagnostic endeavors.","PeriodicalId":54638,"journal":{"name":"Pattern Recognition Letters","volume":"24 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition Letters","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.patrec.2024.07.022","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Covid-19 is a severe illness caused by the Sars-CoV-2 virus, initially identified in China in late 2019 and swiftly spreading globally. Since the virus primarily impacts the lungs, analyzing chest X-rays stands as a reliable and widely accessible means of diagnosing the infection. In computer vision, deep learning models such as CNNs have been the main adopted approach for detection of Covid-19 in chest X-ray images. However, we believe that handcrafted features can also provide relevant results, as shown previously in similar image classification challenges. In this study, we propose a method for identifying Covid-19 in chest X-ray images by extracting and classifying local and global percolation-based features. This technique was tested on three datasets: one comprising 2,002 segmented samples categorized into two groups (Covid-19 and Healthy); another with 1,125 non-segmented samples categorized into three groups (Covid-19, Healthy, and Pneumonia); and a third one composed of 4,809 non-segmented images representing three classes (Covid-19, Healthy, and Pneumonia). Then, 48 percolation features were extracted and give as input into six distinct classifiers. Subsequently, the AUC and accuracy metrics were assessed. We used the 10-fold cross-validation approach and evaluated lesion sub-types via binary and multiclass classification using the Hermite polynomial classifier, a novel approach in this domain. The Hermite polynomial classifier exhibited the most promising outcomes compared to five other machine learning algorithms, wherein the best obtained values for accuracy and AUC were 98.72% and 0.9917, respectively. We also evaluated the influence of noise in the features and in the classification accuracy. These results, based in the integration of percolation features with the Hermite polynomial, hold the potential for enhancing lesion detection and supporting clinicians in their diagnostic endeavors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用多项式算法探索渗流特征,对胸部 X 光图像中的 Covid-19 进行分类
Covid-19是由Sars-CoV-2病毒引起的一种严重疾病,最初于2019年底在中国发现,并迅速在全球蔓延。由于该病毒主要影响肺部,因此分析胸部 X 光片是诊断该病毒感染的一种可靠而广泛的手段。在计算机视觉领域,CNN 等深度学习模型一直是检测胸部 X 光图像中 Covid-19 的主要方法。不过,我们认为,正如之前在类似的图像分类挑战中所显示的那样,手工制作的特征也能提供相关结果。在本研究中,我们提出了一种通过提取和分类基于局部和全局渗滤的特征来识别胸部 X 光图像中 Covid-19 的方法。该技术在三个数据集上进行了测试:一个数据集由 2,002 个分割样本组成,分为两组(Covid-19 和健康);另一个数据集由 1,125 个非分割样本组成,分为三组(Covid-19、健康和肺炎);第三个数据集由 4,809 个非分割图像组成,代表三个类别(Covid-19、健康和肺炎)。然后,提取 48 个渗滤特征,并将其作为输入输入到六个不同的分类器中。随后,评估了 AUC 和准确度指标。我们采用了 10 倍交叉验证方法,并使用 Hermite 多项式分类器(这是该领域的一种新方法)通过二分类和多分类对病变子类型进行了评估。与其他五种机器学习算法相比,Hermite 多项式分类器表现出了最有前途的结果,准确率和 AUC 的最佳值分别为 98.72% 和 0.9917。我们还评估了噪声对特征和分类准确率的影响。这些结果基于渗滤特征与赫米特多项式的整合,有望提高病变检测能力,并为临床医生的诊断工作提供支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Pattern Recognition Letters
Pattern Recognition Letters 工程技术-计算机:人工智能
CiteScore
12.40
自引率
5.90%
发文量
287
审稿时长
9.1 months
期刊介绍: Pattern Recognition Letters aims at rapid publication of concise articles of a broad interest in pattern recognition. Subject areas include all the current fields of interest represented by the Technical Committees of the International Association of Pattern Recognition, and other developing themes involving learning and recognition.
期刊最新文献
Personalized Federated Learning on long-tailed data via knowledge distillation and generated features Adaptive feature alignment for adversarial training Discrete diffusion models with Refined Language-Image Pre-trained representations for remote sensing image captioning A unified framework to stereotyped behavior detection for screening Autism Spectrum Disorder Explainable hypergraphs for gait based Parkinson classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1