{"title":"Robust matrix factor analysis method with adaptive parameter adjustment using Cauchy weighting","authors":"Junchen Li","doi":"10.1007/s00180-024-01548-4","DOIUrl":null,"url":null,"abstract":"<p>In recent years, high-dimensional matrix factor models have been widely applied in various fields. However, there are few methods that effectively handle heavy-tailed data. To address this problem, we introduced a smooth Cauchy loss function and established an optimization objective through norm minimization, deriving a Cauchy version of the weighted iterative estimation method. Unlike the Huber loss weighted estimation method, the weight calculation in this method is a smooth function rather than a piecewise function. It also considers the need to update parameters in the Cauchy loss function with each iteration during estimation. Ultimately, we propose a weighted estimation method with adaptive parameter adjustment. Subsequently, this paper analyzes the theoretical properties of the method, proving that it has a fast convergence rate. Through data simulation, our method demonstrates significant advantages. Thus, it can serve as a better alternative to other existing estimation methods. Finally, we analyzed a dataset of regional population movements between cities, demonstrating that our proposed method offers estimations with excellent interpretability compared to other methods.</p>","PeriodicalId":55223,"journal":{"name":"Computational Statistics","volume":"5 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00180-024-01548-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, high-dimensional matrix factor models have been widely applied in various fields. However, there are few methods that effectively handle heavy-tailed data. To address this problem, we introduced a smooth Cauchy loss function and established an optimization objective through norm minimization, deriving a Cauchy version of the weighted iterative estimation method. Unlike the Huber loss weighted estimation method, the weight calculation in this method is a smooth function rather than a piecewise function. It also considers the need to update parameters in the Cauchy loss function with each iteration during estimation. Ultimately, we propose a weighted estimation method with adaptive parameter adjustment. Subsequently, this paper analyzes the theoretical properties of the method, proving that it has a fast convergence rate. Through data simulation, our method demonstrates significant advantages. Thus, it can serve as a better alternative to other existing estimation methods. Finally, we analyzed a dataset of regional population movements between cities, demonstrating that our proposed method offers estimations with excellent interpretability compared to other methods.
期刊介绍:
Computational Statistics (CompStat) is an international journal which promotes the publication of applications and methodological research in the field of Computational Statistics. The focus of papers in CompStat is on the contribution to and influence of computing on statistics and vice versa. The journal provides a forum for computer scientists, mathematicians, and statisticians in a variety of fields of statistics such as biometrics, econometrics, data analysis, graphics, simulation, algorithms, knowledge based systems, and Bayesian computing. CompStat publishes hardware, software plus package reports.