Neurons in the medial prefrontal cortex that are not modulated by hippocampal sharp-wave ripples are involved in spatial tuning and signaling upcoming choice.
{"title":"Neurons in the medial prefrontal cortex that are not modulated by hippocampal sharp-wave ripples are involved in spatial tuning and signaling upcoming choice.","authors":"Hanna den Bakker, Fabian Kloosterman","doi":"10.1101/2024.09.09.610935","DOIUrl":null,"url":null,"abstract":"The hippocampus is known to encode spatial information and reactivate experienced trajectories during sharp-wave ripple events. These events are thought to be key time-points at which information about learned trajectories is transferred to the neocortex for long-term storage. It is unclear, however, how this information may be transferred and integrated in downstream cortical regions. In this study, we performed high-density probe recordings across the full depth of the medial prefrontal cortex and in the hippocampus simultaneously in rats while they were performing a task of spatial navigation. We find that neurons in the medial prefrontal cortex encode spatial information and reliably predict upcoming choice on a maze, and we find that a subset of neurons in the mPFC is modulated by hippocampal sharp-wave ripples. However, the neurons that are involved in predicting upcoming choice are not the neurons that are modulated by hippocampal sharp-wave ripples. This indicates that the integration of spatial information requires the collaboration of different specialized populations of neurons.","PeriodicalId":501581,"journal":{"name":"bioRxiv - Neuroscience","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.09.610935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The hippocampus is known to encode spatial information and reactivate experienced trajectories during sharp-wave ripple events. These events are thought to be key time-points at which information about learned trajectories is transferred to the neocortex for long-term storage. It is unclear, however, how this information may be transferred and integrated in downstream cortical regions. In this study, we performed high-density probe recordings across the full depth of the medial prefrontal cortex and in the hippocampus simultaneously in rats while they were performing a task of spatial navigation. We find that neurons in the medial prefrontal cortex encode spatial information and reliably predict upcoming choice on a maze, and we find that a subset of neurons in the mPFC is modulated by hippocampal sharp-wave ripples. However, the neurons that are involved in predicting upcoming choice are not the neurons that are modulated by hippocampal sharp-wave ripples. This indicates that the integration of spatial information requires the collaboration of different specialized populations of neurons.