M R L Zwicker, N S Tiedje, T Dahmen, V K Nadimpalli
{"title":"Integration of spray-formed AISI H13 overspray powder in additive manufacturing to enable a circular ecosystem","authors":"M R L Zwicker, N S Tiedje, T Dahmen, V K Nadimpalli","doi":"10.1088/1757-899x/1310/1/012041","DOIUrl":null,"url":null,"abstract":"Overspray powder is a bi-product of the spray forming process and is commonly considered as scrap material. This study, however, assessed the feasibility of the use of spray-formed AISI H13 overspray as powder feedstock for LPBF as part of a circular economy concept. The overspray powder presented a suitable particle size distribution for LPBF applications and showed the capability of being printed crack free. X-ray diffraction was used to show that ferritic/austenitic overspray powder transformed into a martensitic austenitic microstructure in the as-printed conditions. Furthermore, texture analysis revealed a preferred crystallographic orientation in <100> parallel to the build direction for martensite while the retained austenite presents a preferred orientation in <110> along the build direction.","PeriodicalId":14483,"journal":{"name":"IOP Conference Series: Materials Science and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IOP Conference Series: Materials Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1757-899x/1310/1/012041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Overspray powder is a bi-product of the spray forming process and is commonly considered as scrap material. This study, however, assessed the feasibility of the use of spray-formed AISI H13 overspray as powder feedstock for LPBF as part of a circular economy concept. The overspray powder presented a suitable particle size distribution for LPBF applications and showed the capability of being printed crack free. X-ray diffraction was used to show that ferritic/austenitic overspray powder transformed into a martensitic austenitic microstructure in the as-printed conditions. Furthermore, texture analysis revealed a preferred crystallographic orientation in <100> parallel to the build direction for martensite while the retained austenite presents a preferred orientation in <110> along the build direction.