Microstructure Evolution and Precipitation Strengthening Behaviour of Additively Manufactured High-speed Steels

H Zhang, D A Venero, J Park, S V Petegem, A Özsoy, G Soundarapandiyan, S Robertson, X Zhang, B Chen
{"title":"Microstructure Evolution and Precipitation Strengthening Behaviour of Additively Manufactured High-speed Steels","authors":"H Zhang, D A Venero, J Park, S V Petegem, A Özsoy, G Soundarapandiyan, S Robertson, X Zhang, B Chen","doi":"10.1088/1757-899x/1310/1/012022","DOIUrl":null,"url":null,"abstract":"Additively manufactured (AM) high-speed steels were investigated, focusing specifically on the microstructure evolution during post-treatment in S390 steel and the rapid solidification process in M50 steel. An improved understanding of the processing-microstructure-property relationship for AM high-speed steel is achieved through a combination of post-mortem microstructure characterisation on precipitates and in-situ tracking of phase evolution. Quantitative characterisation of primary carbides and nanoprecipitates highlights the strengthening through nanoprecipitates that contribute to the exceedingly high hardness of 921 HV. Phase evolution during tempering was examined through in-situ synchrotron diffraction and ex-situ small-angle neutron scattering, revealing primary carbide growth by 60 nm within 2 minutes and nanoparticle precipitation with a size of 1.4 nm after 60-minute tempering. Additionally, the microstructure evolution of AM M50 steel was investigated by operando synchrotron diffraction, unveiling cooling rates in the order of 10<sup>5</sup> K/s during liquid-solid transformation. After printing, the carbon content of 0.47 wt.% in the matrix was derived from the martensite tetragonality. The insights gained serve as a valuable guide for designing future steel groups and developing heat treatment procedures tailored for the AM process.","PeriodicalId":14483,"journal":{"name":"IOP Conference Series: Materials Science and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IOP Conference Series: Materials Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1757-899x/1310/1/012022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Additively manufactured (AM) high-speed steels were investigated, focusing specifically on the microstructure evolution during post-treatment in S390 steel and the rapid solidification process in M50 steel. An improved understanding of the processing-microstructure-property relationship for AM high-speed steel is achieved through a combination of post-mortem microstructure characterisation on precipitates and in-situ tracking of phase evolution. Quantitative characterisation of primary carbides and nanoprecipitates highlights the strengthening through nanoprecipitates that contribute to the exceedingly high hardness of 921 HV. Phase evolution during tempering was examined through in-situ synchrotron diffraction and ex-situ small-angle neutron scattering, revealing primary carbide growth by 60 nm within 2 minutes and nanoparticle precipitation with a size of 1.4 nm after 60-minute tempering. Additionally, the microstructure evolution of AM M50 steel was investigated by operando synchrotron diffraction, unveiling cooling rates in the order of 105 K/s during liquid-solid transformation. After printing, the carbon content of 0.47 wt.% in the matrix was derived from the martensite tetragonality. The insights gained serve as a valuable guide for designing future steel groups and developing heat treatment procedures tailored for the AM process.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
快速成型高速钢的微观结构演变和沉淀强化行为
对快速成型(AM)高速钢进行了研究,重点是 S390 钢后处理期间的微观结构演变和 M50 钢的快速凝固过程。通过结合析出物的死后微观结构表征和相演化的原位跟踪,加深了对 AM 高速钢的加工-微观结构-性能关系的理解。原生碳化物和纳米析出物的定量表征凸显了纳米析出物对 921 HV 超高硬度的强化作用。通过原位同步辐射衍射和原位小角中子散射对回火过程中的相变进行了研究,结果表明原生碳化物在 2 分钟内增长了 60 纳米,60 分钟回火后析出的纳米颗粒大小为 1.4 纳米。此外,还通过操作同步辐射衍射研究了 AM M50 钢的微观结构演变,揭示了液固转化过程中 105 K/s 的冷却速度。打印后,基体中 0.47 wt.% 的碳含量来自马氏体的四方性。所获得的见解为设计未来的钢组和开发适合 AM 工艺的热处理程序提供了宝贵的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fluid-structure interaction modeling of dry wire drawing by coupling OpenFOAM models of lubricant film and metal wire 1D and 2D porous media fixed bed reactor simulations with DUO: Steam Methane Reforming (SMR) validation test Evaluation of a carbon dioxide fish barrier with OpenFOAM Open source tools for OpenFOAM - Adaptive mesh refinement and convergence detection Vertical axis turbine simulations based on sliding and overset meshes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1