Micro-macro relationship between microstructure and mechanical behavior of 316L stainless steel fabricated using L-PBF additive manufacturing

C Ozdogan, R A Yildiz, L Tavares, M Malekan
{"title":"Micro-macro relationship between microstructure and mechanical behavior of 316L stainless steel fabricated using L-PBF additive manufacturing","authors":"C Ozdogan, R A Yildiz, L Tavares, M Malekan","doi":"10.1088/1757-899x/1310/1/012017","DOIUrl":null,"url":null,"abstract":"Compared to traditional production techniques, additive manufacturing (AM) of metallic components has several benefits, mainly little material waste and more design freedom. AM process based on laser powder bed fusion has many key process parameters including scanning speed, layer thickness, build direction, and printing power. Each one of these parameters influences microstructure, and hence macro-mechanical behavior of the manufactured part, as the part microstructure plays a critical role in determining the mechanical properties. This work aims to address a relationship between micro-structure and macro-mechanical behavior of AM fabricated parts made of 316L Stainless Steel. Both as-built and heat-treated samples are being used for experimental testing and microstructure characterizations. Arcan fixture is used to evaluate the macro-mechanical fracture behavior of the material under mode-I, mode-II, and mixed-mode conditions. Microstructure evaluations of the fracture surfaces are done using scanning electron microscopy and X-Ray diffraction techniques. Finally, a correlation between micro-scale characteristics and macro-mechanical behavior is obtained together with different AM process parameters.","PeriodicalId":14483,"journal":{"name":"IOP Conference Series: Materials Science and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IOP Conference Series: Materials Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1757-899x/1310/1/012017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Compared to traditional production techniques, additive manufacturing (AM) of metallic components has several benefits, mainly little material waste and more design freedom. AM process based on laser powder bed fusion has many key process parameters including scanning speed, layer thickness, build direction, and printing power. Each one of these parameters influences microstructure, and hence macro-mechanical behavior of the manufactured part, as the part microstructure plays a critical role in determining the mechanical properties. This work aims to address a relationship between micro-structure and macro-mechanical behavior of AM fabricated parts made of 316L Stainless Steel. Both as-built and heat-treated samples are being used for experimental testing and microstructure characterizations. Arcan fixture is used to evaluate the macro-mechanical fracture behavior of the material under mode-I, mode-II, and mixed-mode conditions. Microstructure evaluations of the fracture surfaces are done using scanning electron microscopy and X-Ray diffraction techniques. Finally, a correlation between micro-scale characteristics and macro-mechanical behavior is obtained together with different AM process parameters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用 L-PBF 快速成型技术制造的 316L 不锈钢的微观结构与力学性能之间的微观-宏观关系
与传统生产技术相比,金属部件的增材制造(AM)技术有许多优点,主要是材料浪费少、设计自由度高。基于激光粉末床熔融技术的增材制造工艺有许多关键的工艺参数,包括扫描速度、层厚、构建方向和打印功率。这些参数中的每一个都会影响微观结构,进而影响制造部件的宏观机械性能,因为部件的微观结构在决定机械性能方面起着至关重要的作用。本研究旨在探讨由 316L 不锈钢制成的 AM 制品的微观结构与宏观机械性能之间的关系。坯件和热处理样品都被用于实验测试和微观结构表征。Arcan 夹具用于评估材料在模式 I、模式 II 和混合模式条件下的宏观机械断裂行为。使用扫描电子显微镜和 X 射线衍射技术对断裂表面的微观结构进行评估。最后,结合不同的 AM 工艺参数,得出了微观尺度特征与宏观力学行为之间的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fluid-structure interaction modeling of dry wire drawing by coupling OpenFOAM models of lubricant film and metal wire 1D and 2D porous media fixed bed reactor simulations with DUO: Steam Methane Reforming (SMR) validation test Evaluation of a carbon dioxide fish barrier with OpenFOAM Open source tools for OpenFOAM - Adaptive mesh refinement and convergence detection Vertical axis turbine simulations based on sliding and overset meshes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1