A Boltzmann statistical approach for the analysis of polarization states in mixed phase ferroelectric materials

Abhijit Pramanick, Laurent Daniel
{"title":"A Boltzmann statistical approach for the analysis of polarization states in mixed phase ferroelectric materials","authors":"Abhijit Pramanick, Laurent Daniel","doi":"arxiv-2409.07177","DOIUrl":null,"url":null,"abstract":"Ferroelectrics are widely used for a broad array of technological\napplications due to their attractive electrical and electromechanical\nproperties. In order to obtain large functional properties, material\ncompositions are often designed to favor a coexistence of multiple\nferroelectric phases. For such compositions, the macroscopically observed\nenhanced properties are variously attributed to easier domain switching and/or\nphase transition. Nevertheless, modelling of concurrent domain switching and\nphase transition in mixed phase ferroelectrics remains a challenging task.\nHere, a methodology is presented to quantitatively evaluate the volume\nfractions of different domain variants in a mixed phase ferroelectric under\ncomplex electromechanical loading. The methodology combines the phenomenology\nof Landau free energy of ferroelectric phases with Boltzmann statistical\nanalysis, and is presented for Pb(Zr,Ti)O3 near morphotropic phase boundary\n(MPB). It is shown that specific grain orientation has a significant effect on\nhow proximity to phase boundary affects microscopic phenomena, and consequently\nfunctional responses.","PeriodicalId":501234,"journal":{"name":"arXiv - PHYS - Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ferroelectrics are widely used for a broad array of technological applications due to their attractive electrical and electromechanical properties. In order to obtain large functional properties, material compositions are often designed to favor a coexistence of multiple ferroelectric phases. For such compositions, the macroscopically observed enhanced properties are variously attributed to easier domain switching and/or phase transition. Nevertheless, modelling of concurrent domain switching and phase transition in mixed phase ferroelectrics remains a challenging task. Here, a methodology is presented to quantitatively evaluate the volume fractions of different domain variants in a mixed phase ferroelectric under complex electromechanical loading. The methodology combines the phenomenology of Landau free energy of ferroelectric phases with Boltzmann statistical analysis, and is presented for Pb(Zr,Ti)O3 near morphotropic phase boundary (MPB). It is shown that specific grain orientation has a significant effect on how proximity to phase boundary affects microscopic phenomena, and consequently functional responses.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分析混合相铁电材料极化态的玻尔兹曼统计方法
铁电因其极具吸引力的电气和机电特性而被广泛应用于各种技术领域。为了获得较大的功能特性,通常会对材料成分进行设计,以促进多种铁电相的共存。对于此类组合物,宏观上观察到的增强特性可归因于更容易的畴切换和/或相变。然而,混合相铁电中并发畴切换和相转变的建模仍然是一项具有挑战性的任务。本文介绍了一种方法,用于定量评估混合相铁电在复杂机电负载下不同畴变体的体积分数。该方法结合了铁电相的朗道自由能现象学和玻尔兹曼统计分析法,并以靠近各向形态相边界(MPB)的 Pb(Zr,Ti)O3 为研究对象。结果表明,特定的晶粒取向对接近相边界如何影响微观现象以及功能响应有显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Anionic disorder and its impact on the surface electronic structure of oxynitride photoactive semiconductors Accelerating the Training and Improving the Reliability of Machine-Learned Interatomic Potentials for Strongly Anharmonic Materials through Active Learning Hybridization gap approaching the two-dimensional limit of topological insulator Bi$_x$Sb$_{1-x}$ Sampling Latent Material-Property Information From LLM-Derived Embedding Representations Smart Data-Driven GRU Predictor for SnO$_2$ Thin films Characteristics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1