Sampling Latent Material-Property Information From LLM-Derived Embedding Representations

Luke P. J. Gilligan, Matteo Cobelli, Hasan M. Sayeed, Taylor D. Sparks, Stefano Sanvito
{"title":"Sampling Latent Material-Property Information From LLM-Derived Embedding Representations","authors":"Luke P. J. Gilligan, Matteo Cobelli, Hasan M. Sayeed, Taylor D. Sparks, Stefano Sanvito","doi":"arxiv-2409.11971","DOIUrl":null,"url":null,"abstract":"Vector embeddings derived from large language models (LLMs) show promise in\ncapturing latent information from the literature. Interestingly, these can be\nintegrated into material embeddings, potentially useful for data-driven\npredictions of materials properties. We investigate the extent to which\nLLM-derived vectors capture the desired information and their potential to\nprovide insights into material properties without additional training. Our\nfindings indicate that, although LLMs can be used to generate representations\nreflecting certain property information, extracting the embeddings requires\nidentifying the optimal contextual clues and appropriate comparators. Despite\nthis restriction, it appears that LLMs still have the potential to be useful in\ngenerating meaningful materials-science representations.","PeriodicalId":501234,"journal":{"name":"arXiv - PHYS - Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Vector embeddings derived from large language models (LLMs) show promise in capturing latent information from the literature. Interestingly, these can be integrated into material embeddings, potentially useful for data-driven predictions of materials properties. We investigate the extent to which LLM-derived vectors capture the desired information and their potential to provide insights into material properties without additional training. Our findings indicate that, although LLMs can be used to generate representations reflecting certain property information, extracting the embeddings requires identifying the optimal contextual clues and appropriate comparators. Despite this restriction, it appears that LLMs still have the potential to be useful in generating meaningful materials-science representations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从 LLM 衍生的嵌入表征中抽取潜在材料属性信息
从大型语言模型(LLMs)中提取的矢量嵌入有望从文献中获取潜在信息。有趣的是,这些信息可以被整合到材料嵌入中,从而为数据驱动的材料特性预测提供潜在帮助。我们研究了从 LLM 派生的向量在多大程度上捕捉到了所需的信息,以及它们在无需额外训练的情况下深入了解材料特性的潜力。我们的研究结果表明,尽管 LLM 可用来生成反映某些属性信息的表征,但提取嵌入结果需要确定最佳的上下文线索和适当的比较器。尽管存在这种限制,但 LLM 似乎仍有潜力用于生成有意义的材料科学表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Anionic disorder and its impact on the surface electronic structure of oxynitride photoactive semiconductors Accelerating the Training and Improving the Reliability of Machine-Learned Interatomic Potentials for Strongly Anharmonic Materials through Active Learning Hybridization gap approaching the two-dimensional limit of topological insulator Bi$_x$Sb$_{1-x}$ Sampling Latent Material-Property Information From LLM-Derived Embedding Representations Smart Data-Driven GRU Predictor for SnO$_2$ Thin films Characteristics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1