Smart Data-Driven GRU Predictor for SnO$_2$ Thin films Characteristics

Faiza Bouamra, Mohamed Sayah, Labib Sadek Terrissa, Noureddine Zerhouni
{"title":"Smart Data-Driven GRU Predictor for SnO$_2$ Thin films Characteristics","authors":"Faiza Bouamra, Mohamed Sayah, Labib Sadek Terrissa, Noureddine Zerhouni","doi":"arxiv-2409.11782","DOIUrl":null,"url":null,"abstract":"In material physics, characterization techniques are foremost crucial for\nobtaining the materials data regarding the physical properties as well as\nstructural, electronics, magnetic, optic, dielectric, and spectroscopic\ncharacteristics. However, for many materials, ensuring availability and safe\naccessibility is not always easy and fully warranted. Moreover, the use of\nmodeling and simulation techniques need a lot of theoretical knowledge, in\naddition of being associated to costly computation time and a great complexity\ndeal. Thus, analyzing materials with different techniques for multiple samples\nsimultaneously, still be very challenging for engineers and researchers. It is\nworth noting that although of being very risky, X-ray diffraction is the well\nknown and widely used characterization technique which gathers data from\nstructural properties of crystalline 1d, 2d or 3d materials. We propose in this\npaper, a Smart GRU for Gated Recurrent Unit model to forcast structural\ncharacteristics or properties of thin films of tin oxide SnO$_2$(110). Indeed,\nthin films samples are elaborated and managed experimentally and the collected\ndata dictionary is then used to generate an AI -- Artificial Intelligence --\nGRU model for the thin films of tin oxide SnO$_2$(110) structural property\ncharacterization.","PeriodicalId":501234,"journal":{"name":"arXiv - PHYS - Materials Science","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In material physics, characterization techniques are foremost crucial for obtaining the materials data regarding the physical properties as well as structural, electronics, magnetic, optic, dielectric, and spectroscopic characteristics. However, for many materials, ensuring availability and safe accessibility is not always easy and fully warranted. Moreover, the use of modeling and simulation techniques need a lot of theoretical knowledge, in addition of being associated to costly computation time and a great complexity deal. Thus, analyzing materials with different techniques for multiple samples simultaneously, still be very challenging for engineers and researchers. It is worth noting that although of being very risky, X-ray diffraction is the well known and widely used characterization technique which gathers data from structural properties of crystalline 1d, 2d or 3d materials. We propose in this paper, a Smart GRU for Gated Recurrent Unit model to forcast structural characteristics or properties of thin films of tin oxide SnO$_2$(110). Indeed, thin films samples are elaborated and managed experimentally and the collected data dictionary is then used to generate an AI -- Artificial Intelligence -- GRU model for the thin films of tin oxide SnO$_2$(110) structural property characterization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
智能数据驱动的 SnO$_2$ 薄膜特性 GRU 预测器
在材料物理学中,表征技术对于获取材料的物理性质以及结构、电子、磁性、光学、介电和光谱特性数据至关重要。然而,对于许多材料而言,确保其可用性和安全可得性并非易事,也并非完全有必要。此外,使用建模和模拟技术需要大量的理论知识,而且计算时间长、复杂度高。因此,对于工程师和研究人员来说,使用不同的技术同时分析材料的多个样本仍然是一项非常具有挑战性的工作。值得注意的是,X 射线衍射技术虽然风险很高,但却是众所周知、应用广泛的表征技术,它可以收集晶体 1d、2d 或 3d 材料的结构特性数据。我们在本文中提出了一种智能 GRU(即门控循环单元模型),用于预测氧化锡 SnO$_2$(110) 薄膜的结构特性或属性。事实上,我们通过实验对薄膜样品进行阐述和管理,然后利用收集到的数据字典生成用于氧化锡 SnO$_2$(110) 薄膜结构特性描述的 AI(人工智能)--GRU 模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Anionic disorder and its impact on the surface electronic structure of oxynitride photoactive semiconductors Accelerating the Training and Improving the Reliability of Machine-Learned Interatomic Potentials for Strongly Anharmonic Materials through Active Learning Hybridization gap approaching the two-dimensional limit of topological insulator Bi$_x$Sb$_{1-x}$ Sampling Latent Material-Property Information From LLM-Derived Embedding Representations Smart Data-Driven GRU Predictor for SnO$_2$ Thin films Characteristics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1