Combining Brillouin spectroscopy and machine learned interatomic potentials to probe mechanical properties of metal organic frameworks

Florian P. Lindner, Nina Strasser, Martin Schultze, Sandro Wieser, Christian Slugovc, Kareem Elsayad, Kristie J. Koski, Egbert Zojer, Caterina Czibula
{"title":"Combining Brillouin spectroscopy and machine learned interatomic potentials to probe mechanical properties of metal organic frameworks","authors":"Florian P. Lindner, Nina Strasser, Martin Schultze, Sandro Wieser, Christian Slugovc, Kareem Elsayad, Kristie J. Koski, Egbert Zojer, Caterina Czibula","doi":"arxiv-2409.07039","DOIUrl":null,"url":null,"abstract":"The mechanical properties of metal-organic frameworks (MOFs) are of high\nfundamental and also practical relevance. A particularly intriguing technique\nfor determining anisotropic elastic tensors is Brillouin scattering, which so\nfar has rarely been used for highly complex materials like MOFs. In the present\ncontribution, we apply this technique to study a newly synthesized MOF-type\nmaterial, referred to as GUT2. We show that when combining the experiments with\nstate-of-the-art simulations of elastic properties and phonon bands (based on\nmachine-learned force fields and dispersion-corrected density-functional\ntheory). This provides a comprehensive understanding of the experimental\nsignals, which are correlated with the longitudinal and transverse sound\nvelocities. Moreover, even when dealing with comparably small single crystals,\nwhich limit the range of accessible experimental data, combining the insights\nfrom simulations and experiments allows the determination of approximate values\nfor the components of the elastic tensor of the studied material.","PeriodicalId":501234,"journal":{"name":"arXiv - PHYS - Materials Science","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The mechanical properties of metal-organic frameworks (MOFs) are of high fundamental and also practical relevance. A particularly intriguing technique for determining anisotropic elastic tensors is Brillouin scattering, which so far has rarely been used for highly complex materials like MOFs. In the present contribution, we apply this technique to study a newly synthesized MOF-type material, referred to as GUT2. We show that when combining the experiments with state-of-the-art simulations of elastic properties and phonon bands (based on machine-learned force fields and dispersion-corrected density-functional theory). This provides a comprehensive understanding of the experimental signals, which are correlated with the longitudinal and transverse sound velocities. Moreover, even when dealing with comparably small single crystals, which limit the range of accessible experimental data, combining the insights from simulations and experiments allows the determination of approximate values for the components of the elastic tensor of the studied material.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
结合布里渊光谱学和机器学习原子间电位来探测金属有机框架的机械特性
金属有机框架(MOFs)的力学性能具有很高的基础性和实用性。布里渊散射是确定各向异性弹性张量的一种特别有趣的技术,但迄今为止还很少用于 MOFs 这种高度复杂的材料。在本论文中,我们应用这种技术研究了一种新合成的 MOF 类材料,即 GUT2。我们的研究表明,将实验与最先进的弹性特性和声子带模拟(基于机器学习力场和弥散校正密度函数理论)相结合,可以全面理解实验结果。这样就能全面了解与纵向和横向声速相关的实验信号。此外,即使在处理限制了可获得的实验数据范围的相当小的单晶体时,结合模拟和实验的见解也能确定所研究材料的弹性张量分量的近似值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Anionic disorder and its impact on the surface electronic structure of oxynitride photoactive semiconductors Accelerating the Training and Improving the Reliability of Machine-Learned Interatomic Potentials for Strongly Anharmonic Materials through Active Learning Hybridization gap approaching the two-dimensional limit of topological insulator Bi$_x$Sb$_{1-x}$ Sampling Latent Material-Property Information From LLM-Derived Embedding Representations Smart Data-Driven GRU Predictor for SnO$_2$ Thin films Characteristics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1