Quantifying Implantation Damage and Point Defects with Multislice Electron Ptychography

Junghwa Kim, Colin Gilgenbach, Aaditya Bhat, James LeBeau
{"title":"Quantifying Implantation Damage and Point Defects with Multislice Electron Ptychography","authors":"Junghwa Kim, Colin Gilgenbach, Aaditya Bhat, James LeBeau","doi":"arxiv-2409.06987","DOIUrl":null,"url":null,"abstract":"Ion implantation is widely used to dope semiconductors for electronic device\nfabrication, but techniques to quantify point defects and induced damage are\nlimited. While several techniques can measure dopant concentration profiles\nwith high accuracy, none allow for simultaneous atomic resolution structural\nanalysis. Here, we use multislice electron ptychography to quantify the damage\ninduced by erbium implantation in a wide band gap semiconductor 4H-SiC over a\n1,000 nm\\textsuperscript{3} volume region. This damage extends further into the\nsample than expected from implantation simulations that do not consider\ncrystallography. Further, the technique's sensitivity to dopants and vacancies\nis evaluated as a function of damage. As each reconstructed analysis volume\ncontains approximately 10$^5$ atoms, sensitivity of 10\\textsuperscript{18}\ncm\\textsuperscript{-3} (in the order of 10 ppm) is demonstrated in the\nimplantation tail region. After point defect identification, the local\ndistortions surrounding \\ch{Er_{Si}} and \\ch{v_{Si}} defects are quantified.\nThese results underscore the power of multislice electron ptychography to\nenable the investigation of point defects as a tool to guide the fabrication of\nfuture electronic devices.","PeriodicalId":501234,"journal":{"name":"arXiv - PHYS - Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ion implantation is widely used to dope semiconductors for electronic device fabrication, but techniques to quantify point defects and induced damage are limited. While several techniques can measure dopant concentration profiles with high accuracy, none allow for simultaneous atomic resolution structural analysis. Here, we use multislice electron ptychography to quantify the damage induced by erbium implantation in a wide band gap semiconductor 4H-SiC over a 1,000 nm\textsuperscript{3} volume region. This damage extends further into the sample than expected from implantation simulations that do not consider crystallography. Further, the technique's sensitivity to dopants and vacancies is evaluated as a function of damage. As each reconstructed analysis volume contains approximately 10$^5$ atoms, sensitivity of 10\textsuperscript{18} cm\textsuperscript{-3} (in the order of 10 ppm) is demonstrated in the implantation tail region. After point defect identification, the local distortions surrounding \ch{Er_{Si}} and \ch{v_{Si}} defects are quantified. These results underscore the power of multislice electron ptychography to enable the investigation of point defects as a tool to guide the fabrication of future electronic devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用多层电子断层扫描量化植入损伤和点状缺陷
离子注入法被广泛应用于电子设备制造中的半导体掺杂,但量化点缺陷和诱导损伤的技术却很有限。虽然有几种技术可以高精度地测量掺杂剂浓度分布,但没有一种技术可以同时进行原子分辨率结构分析。在这里,我们使用多层电子层析成像技术来量化宽带隙半导体 4H-SiC 中铒植入在 1,000 nm\superscript{3} 体积区域内引起的损伤。这种损伤比不考虑晶体学的植入模拟所预期的更深入样品内部。此外,该技术对掺杂剂和空位的敏感性也作为损伤的函数进行了评估。由于每个重建的分析体积大约包含 10$^5$ 个原子,因此在植入尾部区域的灵敏度为 10textsuperscript{18}cm/textsuperscript{-3}(大约 10 ppm)。在点缺陷识别之后,围绕着ch{Er_{Si}}和ch{v_{Si}}缺陷的局部失稳也得到了量化。这些结果凸显了多层电子层析成像技术作为一种指导未来电子器件制造的工具,在调查点缺陷方面所具有的强大功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Anionic disorder and its impact on the surface electronic structure of oxynitride photoactive semiconductors Accelerating the Training and Improving the Reliability of Machine-Learned Interatomic Potentials for Strongly Anharmonic Materials through Active Learning Hybridization gap approaching the two-dimensional limit of topological insulator Bi$_x$Sb$_{1-x}$ Sampling Latent Material-Property Information From LLM-Derived Embedding Representations Smart Data-Driven GRU Predictor for SnO$_2$ Thin films Characteristics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1