Absence of Anomalous Electron-Phonon Coupling in the Temperature Renormalization of the Gap of CsPbBr$_3$ Nanocrystals

Shima Fasahat, Benedikt Schäfer, Kai Xu, Nadesh Fiuza-Maneiro, Sergio Gómez-Graña, M. Isabel Alonso, Lakshminarayana Polavarapu, Alejandro R. Goñi
{"title":"Absence of Anomalous Electron-Phonon Coupling in the Temperature Renormalization of the Gap of CsPbBr$_3$ Nanocrystals","authors":"Shima Fasahat, Benedikt Schäfer, Kai Xu, Nadesh Fiuza-Maneiro, Sergio Gómez-Graña, M. Isabel Alonso, Lakshminarayana Polavarapu, Alejandro R. Goñi","doi":"arxiv-2409.06374","DOIUrl":null,"url":null,"abstract":"Metal halide perovskites exhibit a fairly linear increase of the bandgap with\nincreasing temperature, when crystallized in a tetragonal or cubic phase. In\ngeneral, both thermal expansion and electron-phonon interaction effects\ncontribute equally to this variation of the gap with temperature. Herein, we\nhave disentangled both contributions in the case of colloidal CsPbBr$_3$\nnanocrystals (NCs) by means of photoluminescence (PL) measurements as a\nfunction of temperature (from 80 K to ambient) and hydrostatic pressure (from\natmospheric to ca. 1 GPa). At around room temperature, CsPbBr$_3$ NCs also show\na linear increase of the bandgap with temperature with a slope similar to that\nof the archetypal methylammonium lead iodide (MAPbI$_3$) perovskite. This is\nsomehow unexpected in view of the recent observations in mixed-cation\nCs$_x$MA$_{1-x}$PbI$_3$ single crystals with low Cs content, for which Cs\nincorporation caused a reduction by a factor of two in the temperature slope of\nthe gap. This effect was ascribed to an anomalous electron-phonon interaction\ninduced by the coupling with vibrational modes admixed with the Cs\ntranslational dynamics inside the cage voids. Thus, no trace of anomalous\ncoupling is found in CsPbBr$_3$ NCs. In fact, we show that the linear\ntemperature renormalization exhibited by the gap of CsPbBr$_3$ NCs is shared\nwith most metal halide perovskites, due to a common bonding/antibonding and\natomic orbital character of the electronic band-edge states. In this way, we\nprovide a deeper understanding of the gap temperature dependence in the general\ncase when the A-site cation dynamics is not involved in the electron-phonon\ninteraction.","PeriodicalId":501234,"journal":{"name":"arXiv - PHYS - Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Metal halide perovskites exhibit a fairly linear increase of the bandgap with increasing temperature, when crystallized in a tetragonal or cubic phase. In general, both thermal expansion and electron-phonon interaction effects contribute equally to this variation of the gap with temperature. Herein, we have disentangled both contributions in the case of colloidal CsPbBr$_3$ nanocrystals (NCs) by means of photoluminescence (PL) measurements as a function of temperature (from 80 K to ambient) and hydrostatic pressure (from atmospheric to ca. 1 GPa). At around room temperature, CsPbBr$_3$ NCs also show a linear increase of the bandgap with temperature with a slope similar to that of the archetypal methylammonium lead iodide (MAPbI$_3$) perovskite. This is somehow unexpected in view of the recent observations in mixed-cation Cs$_x$MA$_{1-x}$PbI$_3$ single crystals with low Cs content, for which Cs incorporation caused a reduction by a factor of two in the temperature slope of the gap. This effect was ascribed to an anomalous electron-phonon interaction induced by the coupling with vibrational modes admixed with the Cs translational dynamics inside the cage voids. Thus, no trace of anomalous coupling is found in CsPbBr$_3$ NCs. In fact, we show that the linear temperature renormalization exhibited by the gap of CsPbBr$_3$ NCs is shared with most metal halide perovskites, due to a common bonding/antibonding and atomic orbital character of the electronic band-edge states. In this way, we provide a deeper understanding of the gap temperature dependence in the general case when the A-site cation dynamics is not involved in the electron-phonon interaction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CsPbBr$_3$ 纳米晶体间隙的温度重正化中不存在反常电子-鹭鸶耦合现象
当结晶为四方或立方晶相时,金属卤化物包光体的带隙在温度升高时呈相当线性的增长。一般来说,热膨胀效应和电子-声子相互作用效应对这种带隙随温度变化的影响是相同的。在这里,我们通过测量光致发光(PL)与温度(从 80 K 到环境温度)和静水压力(从大气压到约 1 GPa)的函数关系,对胶体 CsPbBr$_3$ 纳米晶体(NCs)的情况进行了分析。在室温左右,CsPbBr$_3$ NCs 的带隙也随温度呈线性增长,其斜率与典型的甲基碘化铵铅 (MAPbI$_3$) 包晶的斜率相似。鉴于最近在铯含量较低的混合阳离子 Cs$_x$MA$_{1-x}$PbI$_3$ 单晶中观察到的情况,这多少有些出乎意料。这种效应可归因于笼状空隙内与 C 晶体动态混合的振动模式耦合引起的异常电子-声子相互作用。因此,在 CsPbBr$_3$ NCs 中没有发现异常耦合的痕迹。事实上,我们的研究表明,CsPbBr$_3$ NCs 间隙所表现出的线性温度重正化与大多数金属卤化物包晶石相同,这是由于电子带边态具有共同的成键/反成键和原子轨道特性。这样,当 A 位阳离子动力学不参与电子-声子相互作用时,我们就能更深入地理解一般情况下的间隙温度依赖性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Anionic disorder and its impact on the surface electronic structure of oxynitride photoactive semiconductors Accelerating the Training and Improving the Reliability of Machine-Learned Interatomic Potentials for Strongly Anharmonic Materials through Active Learning Hybridization gap approaching the two-dimensional limit of topological insulator Bi$_x$Sb$_{1-x}$ Sampling Latent Material-Property Information From LLM-Derived Embedding Representations Smart Data-Driven GRU Predictor for SnO$_2$ Thin films Characteristics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1