Variational inference of effective range parameters for ${}^3$He-${}^4$He scattering

Andrius Burnelis, Vojta Kejzlar, Daniel R. Phillips
{"title":"Variational inference of effective range parameters for ${}^3$He-${}^4$He scattering","authors":"Andrius Burnelis, Vojta Kejzlar, Daniel R. Phillips","doi":"arxiv-2408.13250","DOIUrl":null,"url":null,"abstract":"We use two different methods, Monte Carlo sampling and variational inference\n(VI), to perform a Bayesian calibration of the effective-range parameters in\n${}^3$He-${}^4$He elastic scattering. The parameters are calibrated to data\nfrom a recent set of $^{3}$He-${}^4$He elastic scattering differential cross\nsection measurements. Analysis of these data for $E_{\\rm lab} \\leq 4.3$ MeV\nyields a unimodal posterior for which both methods obtain the same structure.\nHowever, the effective-range expansion amplitude does not account for the\n$7/2^-$ state of ${}^7$Be so, even after calibration, the description of data\nat the upper end of this energy range is poor. The data up to $E_{\\rm lab}=2.6$\nMeV can be well described, but calibration to this lower-energy subset of the\ndata yields a bimodal posterior. After adapting VI to treat such a multi-modal\nposterior we find good agreement between the VI results and those obtained with\nparallel-tempered Monte Carlo sampling.","PeriodicalId":501172,"journal":{"name":"arXiv - STAT - Applications","volume":"63 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.13250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We use two different methods, Monte Carlo sampling and variational inference (VI), to perform a Bayesian calibration of the effective-range parameters in ${}^3$He-${}^4$He elastic scattering. The parameters are calibrated to data from a recent set of $^{3}$He-${}^4$He elastic scattering differential cross section measurements. Analysis of these data for $E_{\rm lab} \leq 4.3$ MeV yields a unimodal posterior for which both methods obtain the same structure. However, the effective-range expansion amplitude does not account for the $7/2^-$ state of ${}^7$Be so, even after calibration, the description of data at the upper end of this energy range is poor. The data up to $E_{\rm lab}=2.6$ MeV can be well described, but calibration to this lower-energy subset of the data yields a bimodal posterior. After adapting VI to treat such a multi-modal posterior we find good agreement between the VI results and those obtained with parallel-tempered Monte Carlo sampling.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
{}^3$He-${}^4$He散射有效范围参数的变量推断
我们使用蒙特卡罗抽样和变分推理(VI)这两种不同的方法,对{}^3$He-${}^4$He弹性散射中的有效范围参数进行贝叶斯校准。这些参数是根据最近一组$^{3}$He-${}^4$He弹性散射差分截面测量数据校准的。对这些数据进行了$E_{/rm lab} 分析。\然而,有效范围扩展振幅并没有考虑到${}^7$Be的$7/2^-$态,因此即使经过校准,对这一能量范围上限的数据的描述也很差。最高为$E_{rm lab}=2.6$MeV的数据可以得到很好的描述,但是对这一较低能量的数据子集进行校准会产生一个双峰后验。在调整VI以处理这种多模态后验之后,我们发现VI结果与平行阶调蒙特卡洛采样得到的结果非常一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bayesian estimation of the number of significant principal components for cultural data Optimal Visual Search with Highly Heuristic Decision Rules Who's the GOAT? Sports Rankings and Data-Driven Random Walks on the Symmetric Group Conformity assessment of processes and lots in the framework of JCGM 106:2012 Equity considerations in COVID-19 vaccine allocation modelling: a literature review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1