Privacy risk from synthetic data: practical proposals

Gillian M Raab
{"title":"Privacy risk from synthetic data: practical proposals","authors":"Gillian M Raab","doi":"arxiv-2409.04257","DOIUrl":null,"url":null,"abstract":"This paper proposes and compares measures of identity and attribute\ndisclosure risk for synthetic data. Data custodians can use the methods\nproposed here to inform the decision as to whether to release synthetic\nversions of confidential data. Different measures are evaluated on two data\nsets. Insight into the measures is obtained by examining the details of the\nrecords identified as posing a disclosure risk. This leads to methods to\nidentify, and possibly exclude, apparently risky records where the\nidentification or attribution would be expected by someone with background\nknowledge of the data. The methods described are available as part of the\n\\textbf{synthpop} package for \\textbf{R}.","PeriodicalId":501172,"journal":{"name":"arXiv - STAT - Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes and compares measures of identity and attribute disclosure risk for synthetic data. Data custodians can use the methods proposed here to inform the decision as to whether to release synthetic versions of confidential data. Different measures are evaluated on two data sets. Insight into the measures is obtained by examining the details of the records identified as posing a disclosure risk. This leads to methods to identify, and possibly exclude, apparently risky records where the identification or attribution would be expected by someone with background knowledge of the data. The methods described are available as part of the \textbf{synthpop} package for \textbf{R}.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
合成数据的隐私风险:实用建议
本文提出并比较了合成数据的身份和归属披露风险测量方法。数据保管人可以使用本文提出的方法来决定是否发布机密数据的合成版本。在两个数据集上对不同的测量方法进行了评估。通过检查被识别为具有披露风险的记录的详细信息,可以深入了解这些措施。这就产生了一些方法,用于识别并在可能的情况下排除明显存在风险的记录,而这些记录的识别或归属是了解数据背景知识的人所预料到的。所述方法可作为 \textbf{R} 的 \textbf{synthpop} 软件包的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bayesian estimation of the number of significant principal components for cultural data Optimal Visual Search with Highly Heuristic Decision Rules Who's the GOAT? Sports Rankings and Data-Driven Random Walks on the Symmetric Group Conformity assessment of processes and lots in the framework of JCGM 106:2012 Equity considerations in COVID-19 vaccine allocation modelling: a literature review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1