Estimating Treatment Effect Heterogeneity in Psychiatry: A Review and Tutorial with Causal Forests

Erik Sverdrup, Maria Petukhova, Stefan Wager
{"title":"Estimating Treatment Effect Heterogeneity in Psychiatry: A Review and Tutorial with Causal Forests","authors":"Erik Sverdrup, Maria Petukhova, Stefan Wager","doi":"arxiv-2409.01578","DOIUrl":null,"url":null,"abstract":"Flexible machine learning tools are being used increasingly to estimate\nheterogeneous treatment effects. This paper gives an accessible tutorial\ndemonstrating the use of the causal forest algorithm, available in the R\npackage grf. We start with a brief non-technical overview of treatment effect\nestimation methods with a focus on estimation in observational studies,\nalthough similar methods can be used in experimental studies. We then discuss\nthe logic of estimating heterogeneous effects using the extension of the random\nforest algorithm implemented in grf. Finally, we illustrate causal forest by\nconducting a secondary analysis on the extent to which individual differences\nin resilience to high combat stress can be measured among US Army soldiers\ndeploying to Afghanistan based on information about these soldiers available\nprior to deployment. Throughout we illustrate simple and interpretable\nexercises for both model selection and evaluation, including targeting operator\ncharacteristics curves, Qini curves, area-under-the-curve summaries, and best\nlinear projections. A replication script with simulated data is available at\ngithub.com/grf-labs/grf/tree/master/experiments/ijmpr","PeriodicalId":501172,"journal":{"name":"arXiv - STAT - Applications","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Flexible machine learning tools are being used increasingly to estimate heterogeneous treatment effects. This paper gives an accessible tutorial demonstrating the use of the causal forest algorithm, available in the R package grf. We start with a brief non-technical overview of treatment effect estimation methods with a focus on estimation in observational studies, although similar methods can be used in experimental studies. We then discuss the logic of estimating heterogeneous effects using the extension of the random forest algorithm implemented in grf. Finally, we illustrate causal forest by conducting a secondary analysis on the extent to which individual differences in resilience to high combat stress can be measured among US Army soldiers deploying to Afghanistan based on information about these soldiers available prior to deployment. Throughout we illustrate simple and interpretable exercises for both model selection and evaluation, including targeting operator characteristics curves, Qini curves, area-under-the-curve summaries, and best linear projections. A replication script with simulated data is available at github.com/grf-labs/grf/tree/master/experiments/ijmpr
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
估算精神病学中的治疗效果异质性:因果森林回顾与教程
灵活的机器学习工具越来越多地被用于估计异质性治疗效果。本文通过通俗易懂的教程演示了因果森林算法的使用,该算法可在 Rpackage grf 中获得。我们首先从非技术角度简要介绍了治疗效果估算方法,重点是观察性研究中的估算,尽管类似方法也可用于实验研究。然后,我们将讨论使用 grf 中实现的随机森林算法扩展来估计异质性效应的逻辑。最后,我们通过对部署到阿富汗的美国陆军士兵进行二次分析来说明因果森林在多大程度上可以根据这些士兵部署前的信息来衡量他们对高战斗压力的适应能力的个体差异。在整个分析过程中,我们展示了用于模型选择和评估的简单且可解释的练习,包括目标操作者特征曲线、基尼曲线、曲线下面积总结以及最佳线性预测。带有模拟数据的复制脚本可在以下网站获取:github.com/grf-labs/grf/tree/master/experiments/ijmpr
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bayesian estimation of the number of significant principal components for cultural data Optimal Visual Search with Highly Heuristic Decision Rules Who's the GOAT? Sports Rankings and Data-Driven Random Walks on the Symmetric Group Conformity assessment of processes and lots in the framework of JCGM 106:2012 Equity considerations in COVID-19 vaccine allocation modelling: a literature review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1