Integral transform technique for determining stress intensity factor in wave propagation through functionally graded piezoelectric-viscoelastic structure

Diksha, Soniya Chaudhary, Pawan Kumar Sharma
{"title":"Integral transform technique for determining stress intensity factor in wave propagation through functionally graded piezoelectric-viscoelastic structure","authors":"Diksha, Soniya Chaudhary, Pawan Kumar Sharma","doi":"arxiv-2409.05472","DOIUrl":null,"url":null,"abstract":"This study employs an integral transform approach for Love wave propagation\nin a rotating composite structure having an interfacial crack. The structure\ncomprises an initially stressed functionally graded piezoelectric viscoelastic\nhalf-space bonded to a piezoelectric viscoelastic half-space. The study focuses\non two material systems: Epoxy-BNKLBT paired with Epoxy-KNLNTS and Epoxy-BNKLBT\npaired with Epoxy-PZT7A. The viscoelastic materials are modeled to reflect\ntheir complex behavior under rotational and stress conditions. The Galilean\ntransformation is applied to convert the Cartesian coordinates system into a\nmoving reference frame aligned with the Love wave's propagation. Employing\nBessel function properties, the system is converted into a set of double\nintegral equations and subsequently reformulated into simultaneous Fredholm\nintegral equations. Numerical solutions to these Fredholm integral equations\nare used to calculate the electric displacement intensity factor (EDIF) and\nstress intensity factor (SIF) near the interfacial crack. The key objective of\nthis study is to visualize the impact of different material parameters, like\npiezoelectric constants, dielectric constants, initial stress, interface\nelectric displacement, interface stress, and rotation, on SIF and EDIF. The\ninvestigations of this study will be helpful for advanced technologies like\nsurface acoustic wave (SAW) sensors and piezoelectric actuators, as well as to\nenhance SAW bio-sensor sensitivity and stability for early cancer detection and\nbiomedical implants.","PeriodicalId":501234,"journal":{"name":"arXiv - PHYS - Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study employs an integral transform approach for Love wave propagation in a rotating composite structure having an interfacial crack. The structure comprises an initially stressed functionally graded piezoelectric viscoelastic half-space bonded to a piezoelectric viscoelastic half-space. The study focuses on two material systems: Epoxy-BNKLBT paired with Epoxy-KNLNTS and Epoxy-BNKLBT paired with Epoxy-PZT7A. The viscoelastic materials are modeled to reflect their complex behavior under rotational and stress conditions. The Galilean transformation is applied to convert the Cartesian coordinates system into a moving reference frame aligned with the Love wave's propagation. Employing Bessel function properties, the system is converted into a set of double integral equations and subsequently reformulated into simultaneous Fredholm integral equations. Numerical solutions to these Fredholm integral equations are used to calculate the electric displacement intensity factor (EDIF) and stress intensity factor (SIF) near the interfacial crack. The key objective of this study is to visualize the impact of different material parameters, like piezoelectric constants, dielectric constants, initial stress, interface electric displacement, interface stress, and rotation, on SIF and EDIF. The investigations of this study will be helpful for advanced technologies like surface acoustic wave (SAW) sensors and piezoelectric actuators, as well as to enhance SAW bio-sensor sensitivity and stability for early cancer detection and biomedical implants.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于确定波在功能分级压电-粘弹结构中传播的应力强度因子的积分变换技术
本研究采用积分变换方法研究了爱波在具有界面裂纹的旋转复合结构中的传播。该结构包括一个初始受力的功能分级压电粘弹性半空间和一个压电粘弹性半空间。研究集中于两种材料体系:环氧树脂-BNKLBT 与环氧树脂-KNLNTS 配对,以及环氧树脂-BNKLBT 与环氧树脂-PZT7A 配对。粘弹性材料的建模反映了它们在旋转和应力条件下的复杂行为。应用伽利略变换将笛卡尔坐标系转换为与爱波传播方向一致的移动参考框架。利用贝塞尔函数的特性,该系统被转换为双积分方程组,并随后被重新表述为同步弗里德霍尔积分方程。这些弗雷德霍尔积分方程的数值解用于计算界面裂缝附近的电位移强度因子(EDIF)和应力强度因子(SIF)。本研究的主要目的是观察不同材料参数(如压电常数、介电常数、初始应力、界面电位移、界面应力和旋转)对 SIF 和 EDIF 的影响。这项研究将有助于表面声波 (SAW) 传感器和压电致动器等先进技术的发展,也有助于提高 SAW 生物传感器的灵敏度和稳定性,以用于早期癌症检测和生物医学植入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Anionic disorder and its impact on the surface electronic structure of oxynitride photoactive semiconductors Accelerating the Training and Improving the Reliability of Machine-Learned Interatomic Potentials for Strongly Anharmonic Materials through Active Learning Hybridization gap approaching the two-dimensional limit of topological insulator Bi$_x$Sb$_{1-x}$ Sampling Latent Material-Property Information From LLM-Derived Embedding Representations Smart Data-Driven GRU Predictor for SnO$_2$ Thin films Characteristics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1