A meta-generalized gradient approximation-based time-dependent and dielectric function dependent method for optical properties of solid materials

Hong Tang, Niraj Pangeni, Adrienn Ruzsinszky
{"title":"A meta-generalized gradient approximation-based time-dependent and dielectric function dependent method for optical properties of solid materials","authors":"Hong Tang, Niraj Pangeni, Adrienn Ruzsinszky","doi":"arxiv-2409.04904","DOIUrl":null,"url":null,"abstract":"Accurate and efficient calculation of optical response properties of solid\nmaterials is still challenging. We present a meta-generalized gradient\napproximation (metaGGA) density functional based time-dependent and dielectric\nfunction dependent method for calculating optical absorption, exciton binding\nenergy and intrinsic exciton lifetime for bulk solids and two-dimensional (2D)\nmonolayer materials. This method uses advanced metaGGA functionals to describe\nthe band structures, and a dielectric function mBSE (model Bethe-Salpeter\nequation) to capture the screening effect accurately and efficiently and the\ninteraction between electrons and holes. The calculated optical absorption\nspectra of bulk Si, diamond, SiC, MgO, and monolayer MoS2 qualitatively agree\nwith experimental results. The exciton binding energies of the first prominent\npeak in the optical absorption spectra of the direct band gap solids Ar, NaCl\nand MgO from mBSE qualitatively agree with those from standard GW-BSE. For\nmonolayer MoS2, mBSE predicts quantitatively accurate binding energy for the\nfirst prominent peak, better than GW-BSE does. The calculated intrinsic exciton\nlifetimes for materials considered here show magnitudes of several nanoseconds\nfor most bright excitons. The presented mtaGGA-mBSE method is established as a\ncomputationally efficient alternative for optical properties of materials with\nan overall qualitative accuracy.","PeriodicalId":501234,"journal":{"name":"arXiv - PHYS - Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate and efficient calculation of optical response properties of solid materials is still challenging. We present a meta-generalized gradient approximation (metaGGA) density functional based time-dependent and dielectric function dependent method for calculating optical absorption, exciton binding energy and intrinsic exciton lifetime for bulk solids and two-dimensional (2D) monolayer materials. This method uses advanced metaGGA functionals to describe the band structures, and a dielectric function mBSE (model Bethe-Salpeter equation) to capture the screening effect accurately and efficiently and the interaction between electrons and holes. The calculated optical absorption spectra of bulk Si, diamond, SiC, MgO, and monolayer MoS2 qualitatively agree with experimental results. The exciton binding energies of the first prominent peak in the optical absorption spectra of the direct band gap solids Ar, NaCl and MgO from mBSE qualitatively agree with those from standard GW-BSE. For monolayer MoS2, mBSE predicts quantitatively accurate binding energy for the first prominent peak, better than GW-BSE does. The calculated intrinsic exciton lifetimes for materials considered here show magnitudes of several nanoseconds for most bright excitons. The presented mtaGGA-mBSE method is established as a computationally efficient alternative for optical properties of materials with an overall qualitative accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于元广义梯度近似的时间相关和介电函数相关固体材料光学特性方法
准确、高效地计算固体材料的光响应特性仍然是一项挑战。我们提出了一种基于元广义梯度逼近(metaGGA)密度函数的时变和介电函数相关方法,用于计算块状固体和二维(2D)单层材料的光吸收、激子结合能和本征激子寿命。该方法使用先进的 metaGGA 函数来描述能带结构,并使用介电函数 mBSE(模型贝特-萨尔佩特公式)来准确有效地捕捉屏蔽效应以及电子和空穴之间的相互作用。计算得到的块状硅、金刚石、碳化硅、氧化镁和单层 MoS2 的光吸收谱与实验结果基本吻合。根据 mBSE 计算的直接带隙固体 Ar、NaCland MgO 光吸收光谱中第一个突出峰的激子结合能与标准 GW-BSE 的结果基本一致。对于单层 MoS2,mBSE 比 GW-BSE 更好地定量预测了第一个突出峰的精确结合能。本文所考虑的材料的本征激子寿命计算结果显示,大多数亮激子的寿命为几纳秒。本文提出的 mtaGGA-mBSE 方法是一种计算高效的替代方法,可用于计算材料的光学性质,并具有总体定性精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Anionic disorder and its impact on the surface electronic structure of oxynitride photoactive semiconductors Accelerating the Training and Improving the Reliability of Machine-Learned Interatomic Potentials for Strongly Anharmonic Materials through Active Learning Hybridization gap approaching the two-dimensional limit of topological insulator Bi$_x$Sb$_{1-x}$ Sampling Latent Material-Property Information From LLM-Derived Embedding Representations Smart Data-Driven GRU Predictor for SnO$_2$ Thin films Characteristics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1