Bolstering the Mechanical Robustness of Supramolecular Polymer Network by Mechanical Bond

IF 4.1 2区 化学 Q2 POLYMER SCIENCE Chinese Journal of Polymer Science Pub Date : 2024-08-20 DOI:10.1007/s10118-024-3168-7
Yuan-Hao Wang, Jing-Xi Deng, Jun Zhao, Yi Ding, Li Yang, Zhao-Ming Zhang, Xu-Zhou Yan
{"title":"Bolstering the Mechanical Robustness of Supramolecular Polymer Network by Mechanical Bond","authors":"Yuan-Hao Wang,&nbsp;Jing-Xi Deng,&nbsp;Jun Zhao,&nbsp;Yi Ding,&nbsp;Li Yang,&nbsp;Zhao-Ming Zhang,&nbsp;Xu-Zhou Yan","doi":"10.1007/s10118-024-3168-7","DOIUrl":null,"url":null,"abstract":"<div><p>Supramolecular polymer networks (SPNs) are celebrated for their dynamic nature, yet they often exhibit inadequate mechanical properties. Thus far, the quest to bolster the mechanical resilience of SPNs while preserving their dynamic character presents a formidable challenge. Herein, we introduce [2]rotaxane into SPN to serve as another cross-link, which could effectively enhance the mechanical robustness of the polymer network without losing the dynamic properties. Compared with SPN, the dually cross-linked network (DPN) demonstrates superior breaking strength, Young’s modulus, puncture force and toughness, underscoring its superior robustness. Furthermore, the cyclic tensile tests reveal that the energy dissipation capacity of DPN rivals, and in some cases surpasses, that of SPN, owing to the efficient energy dissipation pathway facilitated by [2]rotaxane. In addition, benefiting from stable topological structure of [2]rotaxane, DPN exhibits accelerated recovery from deformation, indicating superior elasticity compared to SPN. This strategy elevates the performance of SPNs across multiple metrics, presenting a promising avenue for the development of high-performance dynamic materials.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"42 10","pages":"1536 - 1544"},"PeriodicalIF":4.1000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10118-024-3168-7","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Supramolecular polymer networks (SPNs) are celebrated for their dynamic nature, yet they often exhibit inadequate mechanical properties. Thus far, the quest to bolster the mechanical resilience of SPNs while preserving their dynamic character presents a formidable challenge. Herein, we introduce [2]rotaxane into SPN to serve as another cross-link, which could effectively enhance the mechanical robustness of the polymer network without losing the dynamic properties. Compared with SPN, the dually cross-linked network (DPN) demonstrates superior breaking strength, Young’s modulus, puncture force and toughness, underscoring its superior robustness. Furthermore, the cyclic tensile tests reveal that the energy dissipation capacity of DPN rivals, and in some cases surpasses, that of SPN, owing to the efficient energy dissipation pathway facilitated by [2]rotaxane. In addition, benefiting from stable topological structure of [2]rotaxane, DPN exhibits accelerated recovery from deformation, indicating superior elasticity compared to SPN. This strategy elevates the performance of SPNs across multiple metrics, presenting a promising avenue for the development of high-performance dynamic materials.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过机械键合增强超分子聚合物网络的机械稳健性
超分子聚合物网络(SPN)因其动态特性而备受赞誉,但它们往往表现出不足的机械特性。迄今为止,如何在保持超分子聚合物网络动态特性的同时增强其机械韧性是一项艰巨的挑战。在本文中,我们在 SPN 中引入了 [2]rotaxane 作为另一种交联剂,从而在不丧失动态特性的同时有效增强了聚合物网络的机械稳健性。与 SPN 相比,双交联网络(DPN)在断裂强度、杨氏模量、穿刺力和韧性方面都表现出更优越的性能,凸显了其卓越的稳健性。此外,循环拉伸试验表明,由于 [2]rotaxane 促进了有效的能量耗散途径,DPN 的能量耗散能力可与 SPN 相媲美,在某些情况下甚至超过了 SPN。此外,得益于[2]轮烷稳定的拓扑结构,DPN 还能从变形中加速恢复,这表明其弹性优于 SPN。这种策略提升了 SPN 在多个指标上的性能,为开发高性能动态材料提供了一条前景广阔的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chinese Journal of Polymer Science
Chinese Journal of Polymer Science 化学-高分子科学
CiteScore
7.10
自引率
11.60%
发文量
218
审稿时长
6.0 months
期刊介绍: Chinese Journal of Polymer Science (CJPS) is a monthly journal published in English and sponsored by the Chinese Chemical Society and the Institute of Chemistry, Chinese Academy of Sciences. CJPS is edited by a distinguished Editorial Board headed by Professor Qi-Feng Zhou and supported by an International Advisory Board in which many famous active polymer scientists all over the world are included. The journal was first published in 1983 under the title Polymer Communications and has the current name since 1985. CJPS is a peer-reviewed journal dedicated to the timely publication of original research ideas and results in the field of polymer science. The issues may carry regular papers, rapid communications and notes as well as feature articles. As a leading polymer journal in China published in English, CJPS reflects the new achievements obtained in various laboratories of China, CJPS also includes papers submitted by scientists of different countries and regions outside of China, reflecting the international nature of the journal.
期刊最新文献
Chemical Synthesis of Globo H and Mannobiose Glycopolymers and their Immunological Stimulation Crosslinked Natural Rubber and Styrene Butadiene Rubber Blends/Carbon Black Composites for Self-healable and Energy-saved Applications Doping Effect of Poly(vinylidene fluoride) on Carbon Nanofibers Deduced by Thermoelectric Analysis of Their Melt Mixed Films Fabrication of Modified Fibrous Filters by Electrospinning and Investigating Their Application as Improved Face Masks Special Issue: Dynamic Polymer Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1