Sampling parameters of ordinary differential equations with Langevin dynamics that satisfy constraints

Chris Chi, Jonathan Weare, Aaron R. Dinner
{"title":"Sampling parameters of ordinary differential equations with Langevin dynamics that satisfy constraints","authors":"Chris Chi, Jonathan Weare, Aaron R. Dinner","doi":"arxiv-2408.15505","DOIUrl":null,"url":null,"abstract":"Fitting models to data to obtain distributions of consistent parameter values\nis important for uncertainty quantification, model comparison, and prediction.\nStandard Markov Chain Monte Carlo (MCMC) approaches for fitting ordinary\ndifferential equations (ODEs) to time-series data involve proposing trial\nparameter sets, numerically integrating the ODEs forward in time, and accepting\nor rejecting the trial parameter sets. When the model dynamics depend\nnonlinearly on the parameters, as is generally the case, trial parameter sets\nare often rejected, and MCMC approaches become prohibitively computationally\ncostly to converge. Here, we build on methods for numerical continuation and\ntrajectory optimization to introduce an approach in which we use Langevin\ndynamics in the joint space of variables and parameters to sample models that\nsatisfy constraints on the dynamics. We demonstrate the method by sampling Hopf\nbifurcations and limit cycles of a model of a biochemical oscillator in a\nBayesian framework for parameter estimation, and we obtain more than a hundred\nfold speedup relative to a leading ensemble MCMC approach that requires\nnumerically integrating the ODEs forward in time. We describe numerical\nexperiments that provide insight into the speedup. The method is general and\ncan be used in any framework for parameter estimation and model selection.","PeriodicalId":501215,"journal":{"name":"arXiv - STAT - Computation","volume":"73 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Fitting models to data to obtain distributions of consistent parameter values is important for uncertainty quantification, model comparison, and prediction. Standard Markov Chain Monte Carlo (MCMC) approaches for fitting ordinary differential equations (ODEs) to time-series data involve proposing trial parameter sets, numerically integrating the ODEs forward in time, and accepting or rejecting the trial parameter sets. When the model dynamics depend nonlinearly on the parameters, as is generally the case, trial parameter sets are often rejected, and MCMC approaches become prohibitively computationally costly to converge. Here, we build on methods for numerical continuation and trajectory optimization to introduce an approach in which we use Langevin dynamics in the joint space of variables and parameters to sample models that satisfy constraints on the dynamics. We demonstrate the method by sampling Hopf bifurcations and limit cycles of a model of a biochemical oscillator in a Bayesian framework for parameter estimation, and we obtain more than a hundred fold speedup relative to a leading ensemble MCMC approach that requires numerically integrating the ODEs forward in time. We describe numerical experiments that provide insight into the speedup. The method is general and can be used in any framework for parameter estimation and model selection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
满足约束条件的朗格文动态常微分方程参数采样
标准的马尔可夫链蒙特卡罗(MCMC)方法用于将普通微分方程(ODEs)拟合到时间序列数据中,包括提出试验参数集,对 ODEs 进行时间上的数值积分,以及接受或拒绝试验参数集。当模型动态非线性地依赖于参数时(通常是这种情况),试验参数集往往会被拒绝,MCMC 方法的收敛计算成本会高得令人望而却步。在这里,我们以数值延续和轨迹优化方法为基础,引入了一种方法,即在变量和参数的联合空间中使用朗格文德动力学,对满足动力学约束的模型进行采样。我们通过在贝叶斯框架下对一个生化振荡器模型的霍普夫分岔和极限循环进行采样,演示了这种方法的参数估计,与需要在时间上对 ODEs 进行数值积分的领先集合 MCMC 方法相比,我们获得了超过百倍的速度。我们描述了数值实验,以深入了解这种提速。该方法具有通用性,可用于参数估计和模型选择的任何框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Model-Embedded Gaussian Process Regression for Parameter Estimation in Dynamical System Effects of the entropy source on Monte Carlo simulations A Robust Approach to Gaussian Processes Implementation HJ-sampler: A Bayesian sampler for inverse problems of a stochastic process by leveraging Hamilton-Jacobi PDEs and score-based generative models Reducing Shape-Graph Complexity with Application to Classification of Retinal Blood Vessels and Neurons
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1