The Traceplot Thickens: MCMC Diagnostics for Non-Euclidean Spaces

Luke Duttweiler, Jonathan Klus, Brent Coull, Sally W. Thurston
{"title":"The Traceplot Thickens: MCMC Diagnostics for Non-Euclidean Spaces","authors":"Luke Duttweiler, Jonathan Klus, Brent Coull, Sally W. Thurston","doi":"arxiv-2408.15392","DOIUrl":null,"url":null,"abstract":"MCMC algorithms are frequently used to perform inference under a Bayesian\nmodeling framework. Convergence diagnostics, such as traceplots, the\nGelman-Rubin potential scale reduction factor, and effective sample size, are\nused to visualize mixing and determine how long to run the sampler. However,\nthese classic diagnostics can be ineffective when the sample space of the\nalgorithm is highly discretized (eg. Bayesian Networks or Dirichlet Process\nMixture Models) or the sampler uses frequent non-Euclidean moves. In this\narticle, we develop novel generalized convergence diagnostics produced by\nmapping the original space to the real-line while respecting a relevant\ndistance function and then evaluating the convergence diagnostics on the mapped\nvalues. Simulated examples are provided that demonstrate the success of this\nmethod in identifying failures to converge that are missed or unavailable by\nother methods.","PeriodicalId":501215,"journal":{"name":"arXiv - STAT - Computation","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

MCMC algorithms are frequently used to perform inference under a Bayesian modeling framework. Convergence diagnostics, such as traceplots, the Gelman-Rubin potential scale reduction factor, and effective sample size, are used to visualize mixing and determine how long to run the sampler. However, these classic diagnostics can be ineffective when the sample space of the algorithm is highly discretized (eg. Bayesian Networks or Dirichlet Process Mixture Models) or the sampler uses frequent non-Euclidean moves. In this article, we develop novel generalized convergence diagnostics produced by mapping the original space to the real-line while respecting a relevant distance function and then evaluating the convergence diagnostics on the mapped values. Simulated examples are provided that demonstrate the success of this method in identifying failures to converge that are missed or unavailable by other methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
迹图变厚:非欧几里得空间的 MCMC 诊断方法
MCMC 算法经常用于在贝叶斯建模框架下进行推理。收敛性诊断,如轨迹图、Gelman-Rubin 潜在规模缩减因子和有效样本大小,被用来直观显示混合情况并确定运行采样器的时间。然而,当算法的样本空间高度离散化(如贝叶斯网络或狄利克特过程混合模型)或采样器频繁使用非欧几里得移动时,这些经典诊断方法就会失效。在本文中,我们通过将原始空间映射到实线上,同时尊重相关的距离函数,然后在映射值上评估收敛诊断,开发出了新颖的通用收敛诊断。文中提供的模拟示例证明了这种方法在识别收敛失败方面的成功,而这些失败是其他方法所遗漏或无法识别的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Model-Embedded Gaussian Process Regression for Parameter Estimation in Dynamical System Effects of the entropy source on Monte Carlo simulations A Robust Approach to Gaussian Processes Implementation HJ-sampler: A Bayesian sampler for inverse problems of a stochastic process by leveraging Hamilton-Jacobi PDEs and score-based generative models Reducing Shape-Graph Complexity with Application to Classification of Retinal Blood Vessels and Neurons
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1