Optimised Annealed Sequential Monte Carlo Samplers

Saifuddin Syed, Alexandre Bouchard-Côté, Kevin Chern, Arnaud Doucet
{"title":"Optimised Annealed Sequential Monte Carlo Samplers","authors":"Saifuddin Syed, Alexandre Bouchard-Côté, Kevin Chern, Arnaud Doucet","doi":"arxiv-2408.12057","DOIUrl":null,"url":null,"abstract":"Annealed Sequential Monte Carlo (SMC) samplers are special cases of SMC\nsamplers where the sequence of distributions can be embedded in a smooth path\nof distributions. Using this underlying path of distributions and a performance\nmodel based on the variance of the normalisation constant estimator, we\nsystematically study dense schedule and large particle limits. From our theory\nand adaptive methods emerges a notion of global barrier capturing the inherent\ncomplexity of normalisation constant approximation under our performance model.\nWe then turn the resulting approximations into surrogate objective functions of\nalgorithm performance, and use them for methodology development. We obtain\nnovel adaptive methodologies, Sequential SMC (SSMC) and Sequential AIS (SAIS)\nsamplers, which address practical difficulties inherent in previous adaptive\nSMC methods. First, our SSMC algorithms are predictable: they produce a\nsequence of increasingly precise estimates at deterministic and known times.\nSecond, SAIS, a special case of SSMC, enables schedule adaptation at a memory\ncost constant in the number of particles and require much less communication.\nFinally, these characteristics make SAIS highly efficient on GPUs. We develop\nan open-source, high-performance GPU implementation based on our methodology\nand demonstrate up to a hundred-fold speed improvement compared to\nstate-of-the-art adaptive AIS methods.","PeriodicalId":501215,"journal":{"name":"arXiv - STAT - Computation","volume":"230 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.12057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Annealed Sequential Monte Carlo (SMC) samplers are special cases of SMC samplers where the sequence of distributions can be embedded in a smooth path of distributions. Using this underlying path of distributions and a performance model based on the variance of the normalisation constant estimator, we systematically study dense schedule and large particle limits. From our theory and adaptive methods emerges a notion of global barrier capturing the inherent complexity of normalisation constant approximation under our performance model. We then turn the resulting approximations into surrogate objective functions of algorithm performance, and use them for methodology development. We obtain novel adaptive methodologies, Sequential SMC (SSMC) and Sequential AIS (SAIS) samplers, which address practical difficulties inherent in previous adaptive SMC methods. First, our SSMC algorithms are predictable: they produce a sequence of increasingly precise estimates at deterministic and known times. Second, SAIS, a special case of SSMC, enables schedule adaptation at a memory cost constant in the number of particles and require much less communication. Finally, these characteristics make SAIS highly efficient on GPUs. We develop an open-source, high-performance GPU implementation based on our methodology and demonstrate up to a hundred-fold speed improvement compared to state-of-the-art adaptive AIS methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化的校正序列蒙特卡罗采样器
退火连续蒙特卡罗(SMC)采样器是SMC采样器的特例,其中的分布序列可以嵌入平滑的分布路径中。利用这种基本的分布路径和基于归一化常数估计值方差的性能模型,我们对密集计划和大粒子极限进行了系统研究。从我们的理论和自适应方法中产生了一个全局障碍的概念,它捕捉了在我们的性能模型下归一化常数近似的内在复杂性。我们获得了新颖的自适应方法--序列 SMC(SSMC)和序列 AIS(SAIS)采样器,解决了以往自适应 SMC 方法中固有的实际困难。首先,我们的 SSMC 算法是可预测的:它们能在确定和已知的时间内产生一系列越来越精确的估计值。其次,SAIS 是 SSMC 的一种特例,它能在粒子数不变的内存成本下实现计划自适应,而且所需的通信量要少得多。最后,这些特性使得 SAIS 在 GPU 上非常高效。我们基于我们的方法开发了一个开源、高性能的 GPU 实现,并证明与目前最先进的自适应 AIS 方法相比,其速度最多可提高 100 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Model-Embedded Gaussian Process Regression for Parameter Estimation in Dynamical System Effects of the entropy source on Monte Carlo simulations A Robust Approach to Gaussian Processes Implementation HJ-sampler: A Bayesian sampler for inverse problems of a stochastic process by leveraging Hamilton-Jacobi PDEs and score-based generative models Reducing Shape-Graph Complexity with Application to Classification of Retinal Blood Vessels and Neurons
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1