SFC Placement and Dynamic Resource Allocation Based on VNF Performance-Resource Function and Service Requirement in Cloud-Edge Environment

IF 1.9 3区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS Journal of Systems Engineering and Electronics Pub Date : 2024-08-12 DOI:10.23919/jsee.2024.000092
Yingchao Han, Weixiao Meng, Wentao Fan
{"title":"SFC Placement and Dynamic Resource Allocation Based on VNF Performance-Resource Function and Service Requirement in Cloud-Edge Environment","authors":"Yingchao Han, Weixiao Meng, Wentao Fan","doi":"10.23919/jsee.2024.000092","DOIUrl":null,"url":null,"abstract":"With the continuous development of network functions virtualization (NFV) and software-defined networking (SDN) technologies and the explosive growth of network traffic, the requirement for computing resources in the network has risen sharply. Due to the high cost of edge computing resources, coordinating the cloud and edge computing resources to improve the utilization efficiency of edge computing resources is still a considerable challenge. In this paper, we focus on optimizing the placement of network services in cloud-edge environments to maximize the efficiency. It is first proved that, in cloud-edge environments, placing one service function chain (SFC) integrally in the cloud or at the edge can improve the utilization efficiency of edge resources. Then a virtual network function (VNF) performance-resource (P-R) function is proposed to represent the relationship between the VNF instance computing performance and the allocated computing resource. To select the SFCs that are most suitable to deploy at the edge, a VNF placement and resource allocation model is built to configure each VNF with its particular P-R function. Moreover, a heuristic recursive algorithm is designed called the recursive algorithm for max edge throughput (RMET) to solve the model. Through simulations on two scenarios, it is verified that RMET can improve the utilization efficiency of edge computing resources.","PeriodicalId":50030,"journal":{"name":"Journal of Systems Engineering and Electronics","volume":"23 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems Engineering and Electronics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.23919/jsee.2024.000092","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

With the continuous development of network functions virtualization (NFV) and software-defined networking (SDN) technologies and the explosive growth of network traffic, the requirement for computing resources in the network has risen sharply. Due to the high cost of edge computing resources, coordinating the cloud and edge computing resources to improve the utilization efficiency of edge computing resources is still a considerable challenge. In this paper, we focus on optimizing the placement of network services in cloud-edge environments to maximize the efficiency. It is first proved that, in cloud-edge environments, placing one service function chain (SFC) integrally in the cloud or at the edge can improve the utilization efficiency of edge resources. Then a virtual network function (VNF) performance-resource (P-R) function is proposed to represent the relationship between the VNF instance computing performance and the allocated computing resource. To select the SFCs that are most suitable to deploy at the edge, a VNF placement and resource allocation model is built to configure each VNF with its particular P-R function. Moreover, a heuristic recursive algorithm is designed called the recursive algorithm for max edge throughput (RMET) to solve the model. Through simulations on two scenarios, it is verified that RMET can improve the utilization efficiency of edge computing resources.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
云边缘环境中基于 VNF 性能-资源功能和服务需求的 SFC 安置和动态资源分配
随着网络功能虚拟化(NFV)和软件定义网络(SDN)技术的不断发展以及网络流量的爆炸式增长,网络对计算资源的需求急剧上升。由于边缘计算资源成本高昂,如何协调云计算和边缘计算资源以提高边缘计算资源的利用效率仍是一个相当大的挑战。本文主要研究在云-边缘环境中优化网络服务的布局,以实现效率最大化。首先证明了在云-边缘环境中,将一个服务功能链(SFC)整体放置在云中或边缘可以提高边缘资源的利用效率。然后,提出了虚拟网络功能(VNF)性能-资源(P-R)函数,以表示 VNF 实例计算性能与分配的计算资源之间的关系。为了选择最适合部署在边缘的 SFC,建立了一个 VNF 放置和资源分配模型,为每个 VNF 配置其特定的 P-R 函数。此外,还设计了一种称为最大边缘吞吐量递归算法(RMET)的启发式递归算法来求解该模型。通过对两个场景的仿真,验证了 RMET 可以提高边缘计算资源的利用效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
相关文献
Molecular mimicry in halothane hepatitis: Biochemical and structural characterization of lipoylated autoantigens
IF 4.5 3区 医学ToxicologyPub Date : 1995-03-31 DOI: 10.1016/0300-483X(94)03010-Y
Josef Gut, Urs Christen, Nora Frey, Valeria Koch, Daniel Stoffler
Structural, Biochemical Characterization and Molecular Mechanism of Cerastokunin: A New Kunitz-Type Peptide with Potential Inhibition of Thrombin, Factor Xa and Platelets
IF 1.9 4区 生物学The Protein JournalPub Date : 2024-08-02 DOI: 10.1007/s10930-024-10226-9
Noussaiba Saghour, Fatah Chérifi, Samah Saoud, Younes Zebbiche, Amel Meribai, Nadjia Bekkari, Taright-Mahi Samya, Fatima Laraba-Djebari
Molecular and structural characterization of a surfactant-stable high-alkaline protease AprB with a novel structural feature unique to subtilisin family
IF 3.9 3区 生物学BiochimiePub Date : 2011-04-01 DOI: 10.1016/j.biochi.2011.01.011
Aihua Deng , Jie Wu , Guoqiang Zhang , Tingyi Wen
来源期刊
Journal of Systems Engineering and Electronics
Journal of Systems Engineering and Electronics 工程技术-工程:电子与电气
CiteScore
4.10
自引率
14.30%
发文量
131
审稿时长
7.5 months
期刊介绍: Information not localized
期刊最新文献
System Error Iterative Identification for Underwater Positioning Based on Spectral Clustering Cloud Control for IIoT in a Cloud-Edge Environment Multi-Network-Region Traffic Cooperative Scheduling in Large-Scale LEO Satellite Networks Quantitative Method for Calculating Spatial Release Region for Laser-Guided Bomb Early Warning of Core Network Capacity in Space-Terrestrial Integrated Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1