Algorithmic Contract Design with Reinforcement Learning Agents

David Molina Concha, Kyeonghyeon Park, Hyun-Rok Lee, Taesik Lee, Chi-Guhn Lee
{"title":"Algorithmic Contract Design with Reinforcement Learning Agents","authors":"David Molina Concha, Kyeonghyeon Park, Hyun-Rok Lee, Taesik Lee, Chi-Guhn Lee","doi":"arxiv-2408.09686","DOIUrl":null,"url":null,"abstract":"We introduce a novel problem setting for algorithmic contract design, named\nthe principal-MARL contract design problem. This setting extends traditional\ncontract design to account for dynamic and stochastic environments using Markov\nGames and Multi-Agent Reinforcement Learning. To tackle this problem, we\npropose a Multi-Objective Bayesian Optimization (MOBO) framework named\nConstrained Pareto Maximum Entropy Search (cPMES). Our approach integrates MOBO\nand MARL to explore the highly constrained contract design space, identifying\npromising incentive and recruitment decisions. cPMES transforms the\nprincipal-MARL contract design problem into an unconstrained multi-objective\nproblem, leveraging the probability of feasibility as part of the objectives\nand ensuring promising designs predicted on the feasibility border are included\nin the Pareto front. By focusing the entropy prediction on designs within the\nPareto set, cPMES mitigates the risk of the search strategy being overwhelmed\nby entropy from constraints. We demonstrate the effectiveness of cPMES through\nextensive benchmark studies in synthetic and simulated environments, showing\nits ability to find feasible contract designs that maximize the principal's\nobjectives. Additionally, we provide theoretical support with a sub-linear\nregret bound concerning the number of iterations.","PeriodicalId":501315,"journal":{"name":"arXiv - CS - Multiagent Systems","volume":"63-65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Multiagent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.09686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a novel problem setting for algorithmic contract design, named the principal-MARL contract design problem. This setting extends traditional contract design to account for dynamic and stochastic environments using Markov Games and Multi-Agent Reinforcement Learning. To tackle this problem, we propose a Multi-Objective Bayesian Optimization (MOBO) framework named Constrained Pareto Maximum Entropy Search (cPMES). Our approach integrates MOBO and MARL to explore the highly constrained contract design space, identifying promising incentive and recruitment decisions. cPMES transforms the principal-MARL contract design problem into an unconstrained multi-objective problem, leveraging the probability of feasibility as part of the objectives and ensuring promising designs predicted on the feasibility border are included in the Pareto front. By focusing the entropy prediction on designs within the Pareto set, cPMES mitigates the risk of the search strategy being overwhelmed by entropy from constraints. We demonstrate the effectiveness of cPMES through extensive benchmark studies in synthetic and simulated environments, showing its ability to find feasible contract designs that maximize the principal's objectives. Additionally, we provide theoretical support with a sub-linear regret bound concerning the number of iterations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用强化学习代理的算法合同设计
我们为算法合约设计引入了一种新的问题设置,并将其命名为 principal-MARL 合约设计问题。该问题利用马尔可夫游戏和多代理强化学习(Multi-Agent Reinforcement Learning)扩展了传统的合同设计,以考虑动态和随机环境。为了解决这个问题,我们提出了一个多目标贝叶斯优化(MOBO)框架,名为有约束帕累托最大熵搜索(cPMES)。我们的方法整合了 MOBO 和 MARL,以探索高度受限的合同设计空间,识别有前途的激励和招聘决策。cPMES 将主要-MARL 合同设计问题转化为无约束多目标问题,利用可行性概率作为目标的一部分,确保在可行性边界上预测的有前途的设计被纳入帕累托前沿。通过将熵预测重点放在帕累托集内的设计上,cPMES 降低了搜索策略被约束熵淹没的风险。我们通过在合成和模拟环境中进行的大量基准研究证明了 cPMES 的有效性,表明它有能力找到可行的合同设计,使委托人的目标最大化。此外,我们还提供了有关迭代次数的亚线性遗憾约束的理论支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Putting Data at the Centre of Offline Multi-Agent Reinforcement Learning HARP: Human-Assisted Regrouping with Permutation Invariant Critic for Multi-Agent Reinforcement Learning On-policy Actor-Critic Reinforcement Learning for Multi-UAV Exploration CORE-Bench: Fostering the Credibility of Published Research Through a Computational Reproducibility Agent Benchmark Multi-agent Path Finding in Continuous Environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1